Spelling suggestions: "subject:"equacoes diferencia parcial elipticas"" "subject:"utuacoes diferencia parcial elipticas""
21 |
O problema de Dirichlet para a equação de hipersuperfície mínima em M x R com bordo assintótico prescritoTelichevesky, Miriam January 2010 (has links)
O objetivo central deste trabalho consiste em demonstrar a existência de gráficos mínimos C2,x com fronteira assintótica prescrita na variedade produto M R, onde M e completa, simplesmente conexa, com curvatura seccional KM satisfazendo KM ≤ -k2 < 0 e tal que, para algum p Є M, o subgrupo de isotropia de Iso(M) em p age de modo 2-pontos homogêneo nas esferas geodésicas centradas em p. / The main purpose of this work consists on proving the existence of minimal C2,x graphics with prescribed asymptotic boundary in the product manifold M R, where M is a complete, simply connected manifold with sectional curvature KM satisfying KM ≤ -k2 < 0 and such that, for some p 2 M, the isotropy subgroup of Iso(M) in p acts in a 2-points homogeneous way in the geodesic spheres centered in p.
|
22 |
Alguns teoremas de existência e não-existência de gráficos compactos de curvatura média constante com bordo em planos paralelosNeves, Vera Suzana January 2002 (has links)
Neste trabalho estabelecemos a existência de gráficos compactos de curvatura média constante H com bordo em planos paralelos, com hipóteses relacionando a geometria das curvas do bordo, a distância entre os planos, e H. / In this work we establish the existence of compact graphs with constant mean curvature H with boundary in parallel planes, with hypothesis that relates the geometry o f the boundary curves, the distance between the planes and H.
|
23 |
Alguns teoremas de existência e não-existência de gráficos compactos de curvatura média constante com bordo em planos paralelosNeves, Vera Suzana January 2002 (has links)
Neste trabalho estabelecemos a existência de gráficos compactos de curvatura média constante H com bordo em planos paralelos, com hipóteses relacionando a geometria das curvas do bordo, a distância entre os planos, e H. / In this work we establish the existence of compact graphs with constant mean curvature H with boundary in parallel planes, with hypothesis that relates the geometry o f the boundary curves, the distance between the planes and H.
|
24 |
O problema de Dirichlet para a equação de hipersuperfície mínima em M x R com bordo assintótico prescritoTelichevesky, Miriam January 2010 (has links)
O objetivo central deste trabalho consiste em demonstrar a existência de gráficos mínimos C2,x com fronteira assintótica prescrita na variedade produto M R, onde M e completa, simplesmente conexa, com curvatura seccional KM satisfazendo KM ≤ -k2 < 0 e tal que, para algum p Є M, o subgrupo de isotropia de Iso(M) em p age de modo 2-pontos homogêneo nas esferas geodésicas centradas em p. / The main purpose of this work consists on proving the existence of minimal C2,x graphics with prescribed asymptotic boundary in the product manifold M R, where M is a complete, simply connected manifold with sectional curvature KM satisfying KM ≤ -k2 < 0 and such that, for some p 2 M, the isotropy subgroup of Iso(M) in p acts in a 2-points homogeneous way in the geodesic spheres centered in p.
|
25 |
Regularidade no infinito de variedades de Hadamard e alguns problemas de Dirichlet assintóticosTelichevesky, Miriam January 2012 (has links)
Sejam M uma variedade de Hadamard com curvatura seccional KM ≤ −k2 < 0 e ∂ M sua fronteira assintótica. Dizemos que M satisfaz a condição de convexidade estrita se, dados x ∈ ∂∞M e W ⊂ ∂∞M aberto relativo contendo x, existe um aberto Ω ⊂ M de classe C2 tais que x ∈ Int (∂ Ω) ⊂ W e M \ Ω ´e convexo. Provamos que a condição de convexidade estrita implica que M éregular no infinito com relação ao operador Q[u] := div a(|∇u|) \ |∇u| ∇u definido no espa¸co de Sobolev W 1,p(M ), onde a ∈ C1([0, +∞)) satisfaz a(0) = 0, at(s) > 0 para todo s > 0, a(s) ≤ C (sp−1 + 1), ∀s ≥ 0, onde C > 0 é uma constante, e a(s) ≥ sq para algum q > 0 e para s ≈ 0 e supomos que é possível resolver problemas de Dirichlet em bolas (compactas) de M com dados contínuos no bordo. Segue disto que sob a condição de convexidade estrita, os problemas de Dirichlet para equação de hipersuperfície mínima e para o p-laplaciano, p > 1, são solúveis para qualquer dado contínuo prescrito no bordo assintótico. Também provamos que se M é rotacionalmente simétrica ou se inf BR+1 KM ≥ −e 2kR /R2+2 , R ≥ R∗, para certos R∗ e E > 0, então M satisfaz a condição de convexidade estrita. / Let M be Hadamard manifold with sectional curvature KM ≤ −k2, k > 0 and ∂∞M its asymptotic boundary. We say that M satisfies the strict convexity condition if, given x ∈ ∂∞M and a relatively open subset W ⊂ 2 ∂∞M containing x, there exists a C open subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W and M \ Ω is convex. We prove that the strict convexity condition implies that M is regular at infinity relative to the operator Q [u] := div a(|∇u|) \ |∇u| ∇u , defined on the Sobolev space W 1,p(M ), where a ∈ C 1 ([0, ∞)) satisfies a(0) = 0, at(s) > 0 for all s > 0, a(s) ≤ C (s p−1 + 1), ∀s ≥ 0, where C > 0 is a constant, and a(s) ≥ sq , for some q > 0 and for s ≈ 0 and we suppose that it is possible to solve Dirichlet problems on (compact) balls of M with continuous boundary data. It follows that under the strict convexity condition, the Dirichlet problems for the minimal hypersurface and the p-Laplacian, p > 1, equations are solvable for any prescribed continuous asymptotic boundary data. We also prove that if M is rotationally symmetric or if inf BR+1 KM ≥ −e2kR/R2+2 , R ≥ R∗, for some R∗ and E > 0, then M satisfies the SC condition.
|
26 |
Regularidade no infinito de variedades de Hadamard e alguns problemas de Dirichlet assintóticosTelichevesky, Miriam January 2012 (has links)
Sejam M uma variedade de Hadamard com curvatura seccional KM ≤ −k2 < 0 e ∂ M sua fronteira assintótica. Dizemos que M satisfaz a condição de convexidade estrita se, dados x ∈ ∂∞M e W ⊂ ∂∞M aberto relativo contendo x, existe um aberto Ω ⊂ M de classe C2 tais que x ∈ Int (∂ Ω) ⊂ W e M \ Ω ´e convexo. Provamos que a condição de convexidade estrita implica que M éregular no infinito com relação ao operador Q[u] := div a(|∇u|) \ |∇u| ∇u definido no espa¸co de Sobolev W 1,p(M ), onde a ∈ C1([0, +∞)) satisfaz a(0) = 0, at(s) > 0 para todo s > 0, a(s) ≤ C (sp−1 + 1), ∀s ≥ 0, onde C > 0 é uma constante, e a(s) ≥ sq para algum q > 0 e para s ≈ 0 e supomos que é possível resolver problemas de Dirichlet em bolas (compactas) de M com dados contínuos no bordo. Segue disto que sob a condição de convexidade estrita, os problemas de Dirichlet para equação de hipersuperfície mínima e para o p-laplaciano, p > 1, são solúveis para qualquer dado contínuo prescrito no bordo assintótico. Também provamos que se M é rotacionalmente simétrica ou se inf BR+1 KM ≥ −e 2kR /R2+2 , R ≥ R∗, para certos R∗ e E > 0, então M satisfaz a condição de convexidade estrita. / Let M be Hadamard manifold with sectional curvature KM ≤ −k2, k > 0 and ∂∞M its asymptotic boundary. We say that M satisfies the strict convexity condition if, given x ∈ ∂∞M and a relatively open subset W ⊂ 2 ∂∞M containing x, there exists a C open subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W and M \ Ω is convex. We prove that the strict convexity condition implies that M is regular at infinity relative to the operator Q [u] := div a(|∇u|) \ |∇u| ∇u , defined on the Sobolev space W 1,p(M ), where a ∈ C 1 ([0, ∞)) satisfies a(0) = 0, at(s) > 0 for all s > 0, a(s) ≤ C (s p−1 + 1), ∀s ≥ 0, where C > 0 is a constant, and a(s) ≥ sq , for some q > 0 and for s ≈ 0 and we suppose that it is possible to solve Dirichlet problems on (compact) balls of M with continuous boundary data. It follows that under the strict convexity condition, the Dirichlet problems for the minimal hypersurface and the p-Laplacian, p > 1, equations are solvable for any prescribed continuous asymptotic boundary data. We also prove that if M is rotationally symmetric or if inf BR+1 KM ≥ −e2kR/R2+2 , R ≥ R∗, for some R∗ and E > 0, then M satisfies the SC condition.
|
27 |
Regularidade no infinito de variedades de Hadamard e alguns problemas de Dirichlet assintóticosTelichevesky, Miriam January 2012 (has links)
Sejam M uma variedade de Hadamard com curvatura seccional KM ≤ −k2 < 0 e ∂ M sua fronteira assintótica. Dizemos que M satisfaz a condição de convexidade estrita se, dados x ∈ ∂∞M e W ⊂ ∂∞M aberto relativo contendo x, existe um aberto Ω ⊂ M de classe C2 tais que x ∈ Int (∂ Ω) ⊂ W e M \ Ω ´e convexo. Provamos que a condição de convexidade estrita implica que M éregular no infinito com relação ao operador Q[u] := div a(|∇u|) \ |∇u| ∇u definido no espa¸co de Sobolev W 1,p(M ), onde a ∈ C1([0, +∞)) satisfaz a(0) = 0, at(s) > 0 para todo s > 0, a(s) ≤ C (sp−1 + 1), ∀s ≥ 0, onde C > 0 é uma constante, e a(s) ≥ sq para algum q > 0 e para s ≈ 0 e supomos que é possível resolver problemas de Dirichlet em bolas (compactas) de M com dados contínuos no bordo. Segue disto que sob a condição de convexidade estrita, os problemas de Dirichlet para equação de hipersuperfície mínima e para o p-laplaciano, p > 1, são solúveis para qualquer dado contínuo prescrito no bordo assintótico. Também provamos que se M é rotacionalmente simétrica ou se inf BR+1 KM ≥ −e 2kR /R2+2 , R ≥ R∗, para certos R∗ e E > 0, então M satisfaz a condição de convexidade estrita. / Let M be Hadamard manifold with sectional curvature KM ≤ −k2, k > 0 and ∂∞M its asymptotic boundary. We say that M satisfies the strict convexity condition if, given x ∈ ∂∞M and a relatively open subset W ⊂ 2 ∂∞M containing x, there exists a C open subset Ω ⊂ M such that x ∈ Int (∂∞Ω) ⊂ W and M \ Ω is convex. We prove that the strict convexity condition implies that M is regular at infinity relative to the operator Q [u] := div a(|∇u|) \ |∇u| ∇u , defined on the Sobolev space W 1,p(M ), where a ∈ C 1 ([0, ∞)) satisfies a(0) = 0, at(s) > 0 for all s > 0, a(s) ≤ C (s p−1 + 1), ∀s ≥ 0, where C > 0 is a constant, and a(s) ≥ sq , for some q > 0 and for s ≈ 0 and we suppose that it is possible to solve Dirichlet problems on (compact) balls of M with continuous boundary data. It follows that under the strict convexity condition, the Dirichlet problems for the minimal hypersurface and the p-Laplacian, p > 1, equations are solvable for any prescribed continuous asymptotic boundary data. We also prove that if M is rotationally symmetric or if inf BR+1 KM ≥ −e2kR/R2+2 , R ≥ R∗, for some R∗ and E > 0, then M satisfies the SC condition.
|
28 |
[pt] REPRESENTAÇÃO ESTOCÁSTICA PARA SOLUÇÕES DO PROBLEMA DE DIRICHLET PARA EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍPTICAS / [en] STOCHASTIC REPRESENTATION FOR SOLUTIONS OF THE DIRICHLET PROBLEM FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONSCLAUSON CARVALHO DA SILVA 01 September 2016 (has links)
[pt] Como motivação, apresentaremos alguns problemas que ilustram a conexão
entre a teoria da probabilidade e algumas equações diferenciais parciais. Suas
soluções mesclam os dois assuntos e provocam a suspeita de que alguns processos
estocásticos e operadores diferenciais caminham juntos. Em seguida,
exibiremos a teoria das difusões de Itô. Mostraremos algumas de suas características, como a propriedade de Markov e cada um destes processos possuirá
o que chamaremos de gerador infinitesimal da difusão. Este será um operador
diferencial de segunda ordem cujo estudo detalhado revela características
do processo. Apresentaremos também a fórmula de Dynkin. Com essas ferramentas
probabilísticas, encontraremos uma representação estocástica para a
solução do problema de Dirichlet para operadores diferenciais elípticos, generalizando
as soluções dos problemas inicialmente propostos. / [en] Firstly, for motivation purposes, we briefly present a few problems mixing
notions of probability theory and of partial differential equations (PDE). In
discussing the solution to such problems it will become apparent that some
stochastic process and differential equations walk together. Next, we introduce
a class of stochastic processes called the Ito diffusions, and some of its features
such as the Markov property. Each such process has an associated linear
operator the, so called, infinitesimal generator. This operator acts as a second-order
differential operator on smooth functions, and controls the LOCAL
behavior of these diffusions. We discuss these features together with Dynkin s
formula a convenient relation derived from the infinitesimal generator, which
informs us about the AVERAGE behavior of the diffusion. Finally, we apply
these probabilistic tools to find a formula for the solution of the Dirichlet
problem for a somewhat general linear elliptic second order PDE. This formula
connects the solution of the PDE to the aggregated/average behavior and
associated (Ito) diffusion. This type of stochastic representation generalizes
the solution method of the problems firstly discussed.
|
Page generated in 0.0938 seconds