• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2921
  • 980
  • 516
  • 303
  • 147
  • 99
  • 78
  • 64
  • 44
  • 44
  • 44
  • 44
  • 44
  • 42
  • 34
  • Tagged with
  • 6261
  • 2839
  • 1088
  • 1052
  • 869
  • 784
  • 701
  • 582
  • 580
  • 509
  • 501
  • 473
  • 471
  • 468
  • 465
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Refined finite-dimensional reduction method and applications to nonlinear elliptic equations. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Ao, Weiwei. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 178-186). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 1.1 --- Interior Spike Solutions for Lin-Ni-Takagi Problem --- p.7 / Chapter 1.1.1 --- Background and Main Results --- p.7 / Chapter 1.1.2 --- Sketch of the Proof of Theorem 1.1.1 --- p.12 / Chapter 1.2 --- The A2 and B2 Chern-Simons System --- p.14 / Chapter 1.2.1 --- Background --- p.14 / Chapter 1.2.2 --- Previous Results --- p.19 / Chapter 1.2.3 --- Main Results --- p.20 / Chapter 1.2.4 --- Sketch of the Proof for A₂ Case --- p.21 / Chapter 1.2.5 --- Sketch of the Proof for B₂ Case --- p.26 / Chapter 1.3 --- Organization of the Thesis --- p.27 / Chapter 2 --- The Lin-Ni-Takagi Problem --- p.29 / Chapter 2.1 --- Notation and Some Preliminary Analysis --- p.29 / Chapter 2.2 --- Linear Theory --- p.35 / Chapter 2.3 --- The Non Linear Projected Problem --- p.40 / Chapter 2.4 --- An Improved Estimate --- p.43 / Chapter 2.5 --- The Reduced Problem: A Maximization Procedure --- p.50 / Chapter 2.6 --- Proof of Theorem 1.1.1 --- p.58 / Chapter 2.7 --- More Applications and Some Open Problems --- p.60 / Chapter 3 --- The Chern-Simons System --- p.66 / Chapter 3.1 --- Proof of Theorem 1.2.1 in the A₂ Case --- p.66 / Chapter 3.1.1 --- Functional Formulation of the Problem --- p.66 / Chapter 3.1.2 --- First Approximate Solution --- p.68 / Chapter 3.1.3 --- Invertibility of Linearized Operator --- p.72 / Chapter 3.1.4 --- Improvements of the Approximate Solution: O(ε) Term --- p.76 / Chapter 3.1.5 --- Next Improvement of the Approximate Solution: O(ε²) Term --- p.78 / Chapter 3.1.6 --- A Nonlinear Projected Problem --- p.82 / Chapter 3.1.7 --- Proof of Theorem 1.2.1 for A₂ under Assumption (i) --- p.85 / Chapter 3.1.8 --- Proof of Theorem 1.2.1 for A₂ under Assumption (ii) --- p.94 / Chapter 3.1.9 --- Proof of Theorem 1.2.1 for A₂ under Assumption (iii) --- p.99 / Chapter 3.2 --- Proof of Theorem 1.2.1 in the B₂ Case --- p.100 / Chapter 3.2.1 --- Functional Formulation of the Problem for B₂ Case --- p.100 / Chapter 3.2.2 --- Classi cation and Non-degeneracy for B₂ Toda system --- p.101 / Chapter 3.2.3 --- Invertibility of Linearized Operator --- p.105 / Chapter 3.2.4 --- Improvements of the Approximate Solution --- p.106 / Chapter 3.2.5 --- Proof of Theorem 1.2.1 for B₂ under Assumption (i) --- p.112 / Chapter 3.2.6 --- Proof of Theorem 1.2.1 for B₂ under Assumption (ii) --- p.122 / Chapter 3.2.7 --- Proof of Theorem 1.2.1 for B₂ under Assumption (iii) --- p.127 / Chapter 3.3 --- Open Problems --- p.128 / Chapter 4 --- Appendix --- p.129 / Chapter 4.1 --- B₂ and G₂ Toda System with Singular Source --- p.129 / Chapter 4.1.1 --- Case 1: B₂ Toda system with singular source --- p.130 / Chapter 4.1.2 --- Case 2: G₂ Toda system with singular source --- p.136 / Chapter 4.2 --- The Calculations of the Matrix Q₁ --- p.148 / Chapter 4.3 --- The Calculations of the Matrix Q₁ --- p.169 / Bibliography --- p.178
702

Self-similar solutions and large time behavior of solutions to the compressible Navier-Stokes equations. / CUHK electronic theses & dissertations collection

January 2003 (has links)
Guo Zhenhua. / "June 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 79-84). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
703

Critical dimensions of some nonlinear elliptic equations involving critical growth and related asymptotic results.

January 1996 (has links)
Geng Di. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 116-119). / Acknowledgement --- p.i / Abstract --- p.ii / Introduction --- p.iii / Part I --- p.1 / Chapter 1 --- Critical Dimension of a Semilinear Degenerate Elliptic Equation Involving Critical Sobolev-Hardy Exponent --- p.2 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Non-existence (I) --- p.5 / Chapter 1.3 --- Non-existence (II) --- p.11 / Chapter 1.4 --- Existence --- p.13 / Chapter 1.5 --- Radial Symmetry of Solutions --- p.16 / Appendix A --- p.20 / Appendix B --- p.23 / Chapter 2 --- Critical Dimension of a Hessian Equation Involving Critical Ex- ponent --- p.27 / Chapter 2.1 --- Introduction --- p.27 / Chapter 2.2 --- Preliminary Results --- p.29 / Chapter 2.3 --- Existence Results --- p.32 / Chapter 2.4 --- Non-existence Results --- p.43 / Chapter 3 --- Absence of Critical Dimension for the Subelliptic Laplacian on the Heisenberg Group --- p.48 / Chapter 3.1 --- Introduction and Main Result --- p.48 / Chapter 3.2 --- Proof of the Theorem --- p.49 / Part2 --- p.55 / Chapter 4 --- Asymptotic Behavior for Weighted p-Laplace Equations Involv- ing Critical Growth on the Ball --- p.56 / Chapter 4.1 --- Introduction --- p.56 / Chapter 4.2 --- A Crucial Lemma --- p.59 / Chapter 4.3 --- Proof of the Main Theorems --- p.61 / Chapter 5 --- Asymptotics for a Semilinear Weighted Elliptic Equation In- volving Critical Sobolev-Hardy Exponent --- p.71 / Chapter 5.1 --- Introduction --- p.71 / Chapter 5.2 --- Some Preliminary Results --- p.73 / Chapter 5.3 --- A Crucial Estimate --- p.80 / Chapter 5.4 --- Proof of the Main Theorem --- p.85 / Appendix --- p.88 / Chapter 6 --- Asymptotics for Positive Solutions for a Biharmonic Equation Involving Critical Exponent --- p.93 / Chapter 6.1 --- Introduction --- p.93 / Chapter 6.2 --- Preliminary Results --- p.94 / Chapter 6.3 --- Pohozaev's identity and Green's Function --- p.98 / Chapter 6.4 --- A Crucial Lemma --- p.103 / Chapter 6.5 --- Proof of Main Theorem --- p.112 / Bibliography --- p.115
704

Application of real and functional analysis to solve boundary value problems.

Duong, Thanh-Binh, mikewood@deakin.edu.au January 2002 (has links)
This thesis is about using appropriate tools in functional analysis arid classical analysis to tackle the problem of existence and uniqueness of nonlinear partial differential equations. There being no unified strategy to deal with these equations, one approaches each equation with an appropriate method, depending on the characteristics of the equation. The correct setting of the problem in appropriate function spaces is the first important part on the road to the solution. Here, we choose the setting of Sobolev spaces. The second essential part is to choose the correct tool for each equation. In the first part of this thesis (Chapters 3 and 4) we consider a variety of nonlinear hyperbolic partial differential equations with mixed boundary and initial conditions. The methods of compactness and monotonicity are used to prove existence and uniqueness of the solution (Chapter 3). Finding a priori estimates is the main task in this analysis. For some types of nonlinearity, these estimates cannot be easily obtained, arid so these two methods cannot be applied directly. In this case, we first linearise the equation, using linear recurrence (Chapter 4). In the second part of the thesis (Chapter 5), by using an appropriate tool in functional analysis (the Sobolev Imbedding Theorem), we are able to improve previous results on a posteriori error estimates for the finite element method of lines applied to nonlinear parabolic equations. These estimates are crucial in the design of adaptive algorithms for the method, and previous analysis relies on, what we show to be, unnecessary assumptions which limit the application of the algorithms. Our analysis does not require these assumptions. In the last part of the thesis (Chapter 6), staying with the theme of choosing the most suitable tools, we show that using classical analysis in a proper way is in some cases sufficient to obtain considerable results. We study in this chapter nonexistence of positive solutions to Laplace's equation with nonlinear Neumann boundary condition. This problem arises when one wants to study the blow-up at finite time of the solution of the corresponding parabolic problem, which models the heating of a substance by radiation. We generalise known results which were obtained by using more abstract methods.
705

Résolution rapide d'équations intégrales pour un problème d'antennes par des méthodes d'ondelettes

Safa, Cyril 26 September 2001 (has links) (PDF)
Les méthodes intégrales pour résoudre des EDP, et en particulier le système de Maxwell, sont bien connues depuis environ vingt ans. Après discrétisation par éléments finis, un système linéaire plein apparaît, ce qui rend toute implémentation numérique difficile voire impossible. Pour les opérateurs d'ordre positif, quelques travaux ont été menés avec succès pour rendre creuse la matrice du système discret. Quelques difficultés restaient pour le problème de Maxwell: espace(s) d'énergie, présence d'un opérateur d'ordre négatif, et donc choix des ondelettes pour la résolution. Dans cette thèse, je donne une méthode pour ramener le système de Maxwell, issu d'un problème de diffraction en régime harmonique, à une étude sur des espaces de Sobolev classiques définis sur une surface, en utilisant des décompositions de Hodge. Je donne aussi une méthode de compression pourvu que les ondelettes vérifient certaines conditions (moments nuls, stabilité). La méthode de compression donnée fonctionne même avec des ondelettes formées à partir de polynômes de degré un, malgré la présence d'un opérateur d'ordre négatif, sans perturber des taux de convergence optimaux. L'analyse a été faite sur une surface fermée (sans bord) régulière simplement connexe, puis sur une partie à bord polygonal d'une telle surface (plaque ouverte). Les espaces fonctionnels et la compression de matrice, bien plus compliqués dans ce dernier cas, ont été étudiés en détail.
706

Computation of the stresses on a rigid body in exterior stokes and oseen flows

Schuster, Markus 11 June 1998 (has links)
This paper is about the computation of the stresses on a rigid body from a knowledge of the far field velocities in exterior Stokes and Oseen flows. The surface of the body is assumed to be bounded and smooth, and the body is assumed to move with constant velocity. We give fundamental solutions and derive boundary integral equations for the stresses. As it turns out, these integral equations are singular, and their null space is spanned by the normal to the body. We then discretize the problem by replacing the body by an approximating polyhedron with triangular faces. Using a collocation method, each integral equation delivers a linear system. Since its matrix approximates a singular integral operator, the matrix is ill-conditioned, and the solution is unstable. However, since we know that the problem is uniquely solvable in the hyperspace orthogonal to the normal, we use regularization methods to get stable solutions and project them in the normal direction onto the hyperspace. / Graduation date: 1999
707

Boundary control of quasi-linear hyperbolic initial boundary-value problems

de Halleux, Jonathan P. 28 September 2004 (has links)
This thesis presents different control design approaches for stabilizing networks of quasi-linear hyperbolic partial differential equations. These equations are usually conservative which gives them interesting properties to design stabilizing control laws. Two main design approaches are developed: a methodology based on entropies and Lyapunov functions and a methodology based on the Riemann invariants. The stability theorems are illustrated using numerical simulations. Two practical applications of these methodologies are presented. Netword of navigation channels are modelled using Saint-Venant equations (also known as the Shallow Water Equations). The stabilization problem of such system has an industrial importance in order to satisfy the navigation constraints and to optimize the production of electricity in hydroelectric plants, usually located at each hydraulic gates. A second application deals with the regulation of water waves in moving tanks. This problem is also modelled by a modified version of the shallow water equations and appears in a number of industrial fields which deal with liquid moving parts.
708

A computer subroutine for the numerical solution of nonlinear Fredholm equations

Tieman, Henry William 25 April 1991 (has links)
Graduation date: 1991
709

Time domain simulation of Maxwell's equations by the method of characteristics

Orhanovic, Neven 01 October 1993 (has links)
A numerical method based on the the method of characteristics for hyperbolic systems of partial differential equations in four independent variables is developed and used for solving time domain Maxwell's equations. The method uses the characteristic hypersurfaces and the characteristic conditions to derive a set of independent equations relating the electric and magnetic field components on these hypersurfaces. A discretization scheme is developed to solve for the unknown field components at each time step. The method retains many of the good features of the original method of characteristics for hyperbolic systems in two independent variables, such as optimal time step, good behavior near data discontinuities and the ability to treat general boundary conditions. The method is exemplified by calculating the time domain response of a few typical planar interconnect structures to Gaussian and unit step excitations. Although the general emphasis is on interconnect problems, the method is applicable to a number of other transient electromagnetic field problems governed by Maxwell's equations. In addition to the method of characteristics a finite difference scheme, known in mathematic circles as the modified Richtmyer scheme, is applied to the time domain solution of Maxwell's equations. Both methods should be useful for efficient full wave analysis of three dimensional electromagnetic field problems. / Graduation date: 1994
710

Time-Scaled Stochastic Input to Biochemical Reaction Networks

Thomas, Rachel Lee January 2010 (has links)
<p>Biochemical reaction networks with a sufficiently large number of molecules may be represented as systems of differential equations. Many networks receive inputs that fluctuate continuously in time. These networks may never settle down to a static equilibrium and are of great interest both mathematically and biologically. Biological systems receive inputs that vary on multiple time scales. Hormonal and neural inputs vary on a scale of seconds or minutes; inputs from meals and circadian rhythms vary on a scale of hours or days; and long term environmental changes (such as diet, disease, and pollution) vary on a scale of years. In this thesis, we consider the limiting behavior of networks in which the input is on a different time scale compared to the reaction kinetics within the network.</p> <p>We prove analytic results of how the variance of reaction rates within a system compares to the variance of the input when the input is on a different time scale than the reaction kinetics within the network. We consider the behavior of simple chains, single species complex networks, reversible chains, and certain classes of non-linear systems with time-scaled stochastic input, as the input speeds up and slows down. In all cases, as the input fluctuates more and more quickly, the variance of species within the system approaches to zero. As the input fluctuates more and more slowly, the variance of the species approaches the variance of the input, up to a normalization factor.</p> / Dissertation

Page generated in 0.0765 seconds