• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Verfahrenshandbuch für den Bau und Betrieb von Erdwärmesonden in Sachsen: Verfahrenshandbuch für Vorhaben zum Bau und Betrieb von Anlagen zur Gewinnung von Erdwärme gemäß § 11a Absatz 1 Nummer 2 des Wasserhaushaltsgesetzes in Sachsen

Hofmann, Karina, Börner, Susanna, Brünner, Annett, Schröter, Annett 30 August 2023 (has links)
Erdwärme wird vor allem bei Ein- und Mehrfamilienhäusern zur Heizung, zur Warmwasserbereitung und zum Kühlen genutzt. Als Hauptnutzungsform von Erdwärme werden Erdwärmesonden verwendet. Die Broschüre informiert über die geltenden Gesetze und Antragsformulare und gibt Hinweise für die Planung und Umsetzung von Erdwärmesondenvorhaben. Redaktionsschluss: 16.01.2023
2

Mitteltiefe geothermische Anlagen in Sachsen

Reinhardt, Katrin, Schmiedel, Frank, Hermann, Diana 28 October 2020 (has links)
Ziel des Forschungsvorhabens war es, die Einsatzpotentiale mitteltiefer geothermischer Systeme für die sächsischen Ballungsräume Leipzig, Dresden und Chemnitz detailliert zu untersuchen, Kostenvergleiche durchzuführen und Handlungsempfehlungen für potenzielle Projekte abzuleiten. Für jeden Musterstandort wurde eine mitteltiefe Erdwärmesondenanlage vollständig geplant. Mitteltiefe Erdwärmeanlagen können demzufolge eine wirtschaftliche Alternative zur konventionellen Klimatisierung/Temperierung von Gebäuden darstellen. Im vorliegenden Forschungsbericht sind Schritte für Planung, bauliche Umsetzung und Überwachung zusammengefasst. Auch Investitions- und Betriebskosten werden abgeschätzt. Damit können die Ergebnisse des Forschungsvorhabens als Entscheidungshilfe für Behörden, Investoren und Fachplaner herangezogen werden. Redaktionsschluss: 31.08.2020
3

Ein Beitrag zur Modellierung von Erdreichsonden

Kozak, Wojciech 13 January 2018 (has links)
Die verlässliche Vorhersage der Wärmeentzugsleistungen als auch der Soletemperaturen in den Sonden sind wichtig für deren Auslegung und Betriebsoptimierung. Es ist ebenso wichtig für die Auslegung und Optimierung der Anlagen im versorgten Gebäude. In der vorliegenden Dissertation wurde versucht, durch eine mathematische Weiterentwicklung von Greenschen Funktionen (g-Funktionen) eine präzisere Lösung für Temperaturverteilung im Erdreich infolge des von einer oder mehreren Sonden verursachten Wärmeentzuges mit verschiedenen Randbedingungen im geologischen Untergrund zu erreichen. Hierzu wurden sechs „neue“ g-Funktionen entwickelt, die vertikal variable Wärmeentzüge einzelner Sonden und Sondenfelder, eine Asymmetrie des Wärmeentzuges der Sonde, den Einfluss einer zusätzlichen Grundwasserströmung und den realen, geschichteten Untergrund berücksichtigen. Die mathematischen Modelle des Erdreichs wurden mit Modellen für die Soleströmung und Wärmeübergabe in der Hinterfüllung der Sonde gekoppelt und anschließend auf ein praktisches Betriebsbeispiel angewendet. Die Arbeit enthält ebenfalls umfangreiche Sichtung existierender Modelle sowie deren Anwendung und vergleichende Bewertung der teilweise komplexen Modellansätze.:Formelzeichen und Abkürzungen 1 Einführung 2 Energiequellen und Aufbau der Erdwärmeübertrager 2.1 Quellen der geothermalen Energie 2.2 Aufbau der Erdwärmeübertrager 2.3 Betriebsverhalten von Erdwärmesonden 2.4 Auslegung der Sonden 3 Vorhandene Modelle 3.1 Soleströmung 3.2 Wärmeübergang in den Rohren der Sonde 3.3 Wärmeleitung in der Hinterfüllung 3.4 Erdreichmodellierung – numerisch 3.5 Erdreichmodellierung mit g-Funktionen 4 Weiterentwicklung der analytischen Modelle 5 Anwendungsbeispiele 185 5.1 Ein praktisches Beispiel 5.2 Auswirkung auf die Jahresarbeitszahl 6 Zusammenfassung Literatur A Ableitung der Bohrlochwiderstände B Ableitung der Funktionen für Randbedingungen C Eidesstattliche Erklärung / The design of the ground heat exchangers (GHE) systems demands the precise prediction of their heat output and the brine temperature. The same information is needed for design and optimization of the HVAC systems coupled to GHEs. In the thesis at hand the Green’s functions (g-Functions) have been used to develop the more accurate solutions for the temperature distribution in soil resulting from the heat extraction from one GHE or a field of GHEs. These solutions consist of six novel g-functions that take account of the vertical variation of the extracted heat flux in one GHE or field of GHEs, of the horizontal ground water flow and of the horizontal variation of the soil properties. The models for prediction of the soil temperature have been coupled with models for brine flow and heat transfer in the GHE’s grout and eventually applied to the simulation of the real world object. Additionally, the thesis contains broad review of the known models and their applications as well as the comparative analysis of the complex modelling assumptions.:Formelzeichen und Abkürzungen 1 Einführung 2 Energiequellen und Aufbau der Erdwärmeübertrager 2.1 Quellen der geothermalen Energie 2.2 Aufbau der Erdwärmeübertrager 2.3 Betriebsverhalten von Erdwärmesonden 2.4 Auslegung der Sonden 3 Vorhandene Modelle 3.1 Soleströmung 3.2 Wärmeübergang in den Rohren der Sonde 3.3 Wärmeleitung in der Hinterfüllung 3.4 Erdreichmodellierung – numerisch 3.5 Erdreichmodellierung mit g-Funktionen 4 Weiterentwicklung der analytischen Modelle 5 Anwendungsbeispiele 185 5.1 Ein praktisches Beispiel 5.2 Auswirkung auf die Jahresarbeitszahl 6 Zusammenfassung Literatur A Ableitung der Bohrlochwiderstände B Ableitung der Funktionen für Randbedingungen C Eidesstattliche Erklärung
4

On the efficient and sustainable utilisation of shallow geothermal energy by using borehole heat exchangers

Hein, Philipp Sebastian 16 January 2018 (has links) (PDF)
In the context of energy transition, geothermics play an important role for the heating and cooling supply of both residential and commercial buildings. Thereby, the increasingly and intensive utilisation of shallow geothermal resources bears the risk of over-exploitation and thus poses a future challenge to ensure the sustainability and safety of such systems. Particularly, the well-established technology of borehole heat exchanger-coupled ground source heat pumps is applied for the thermal exploitation of the shallow subsurface. Due to the complexity of the involved physical processes, numerical modelling proves to be a powerful tool to enhance process understanding as well as to aid the planning and design processes. Simulations can also support the management of thermal subsurface resources, planning and decision-making on city and regional scales. In this work, the so-called dual-continuum approach was adopted and enhanced to develop a coupled numerical model considering flow and heat transport processes in both the subsurface and borehole heat exchangers as well as the heat pumps’ performance characteristics, and including the relevant phenomena influencing the underlying processes. Beside the temperature fields, the efficiency and thus the consumption of electrical energy by the heat pump is computed, allowing for the quantification of operational costs and equivalent carbon-dioxide emissions. The model is validated and applied to a number of numerical studies. First, a comprehensive sensitivity analysis on the efficiency and sustainability of such systems is performed. Second, a method for the quantification of technically extractable shallow geothermal energy is proposed. This procedure is demonstrated by means of a case study for the city of Cologne, Germany and its implications are discussed. / Im Rahmen der Energiewende nimmt die Geothermie eine besondere Rolle in der thermische Gebäudeversorgung ein. Die zunehmende, intensive Nutzung oberflächennaher geothermischer Ressourcen erhöht die Gefahr der übermäßigen thermischen Ausbeutung des Untergrundes und stellt damit eine wachsende Herausforderung für die Nachhaltigkeit und Sicherheit solcher Systeme dar. Zur Erschließung oberflächennaher geothermischer Energie wird insbesondere die etablierte Technologie Erdwärmesonden-gekoppelter Wärmepumpen eingesetzt. Aufgrund der daran beteiligten komplexen physikalischen Prozesse erweisen sich numerische Modelle als leistungsfähiges Werkzeug zur Erweiterung des Prozessverständnisses und Unterstützung des Planungs- und Auslegungsprozesses. Zudem können Simulationen zum Management thermischer Ressourcen im Untergrund sowie zur Planung und politischen Entscheidungsfindung auf städtischen und regionalen Maßstäben beitragen. Im Rahmen dieser Arbeit wurde, basierend auf dem sogenannten ”dual-continuum approach” und unter Berücksichtigung des Einflusses der Wärmepumpe, ein erweitertes gekoppeltes numerisches Modell zur Abbildung der in Erdwärmesonden und dem Untergrund stattfindenden Strömungs- und Wärmetransportprozesse entwickelt. Das Modell ist in der Lage, alle relevanten Einflussfaktoren zu berücksichtigen. Neben den Temperaturfeldern im Untergrund und der Erdwärmesonde werden die Effizienz und damit der Stromverbrauch der Wärmepumpe simuliert. Damit können sowohl die Betriebskosten als auch der äquivalente CO 2 -Ausstoß abgeschätzt werden. Das Modell wurde validiert und in einer Reihe numerischer Studien eingesetzt. Zuerst wurde eine umfassende Sensitivitätsanalyse zur Effizienz und Nachhaltigkeit entsprechender Anlagen durchgeführt. Weiterhin wird ein Verfahren zur Quantifizierung des technisch nutzbaren, oberflächennahen geothermischen Potentials vorgestellt und anhand einer Fallstudie für die Stadt Köln demonstriert, gefolgt von einer Diskussion der Ergebnisse.
5

Erdwärme: Harmonisierte Methoden zur Potenzialdarstellung: Das EU-Projekt GeoPLASMA-CE: Erdwärme – harmonisierte Methoden zur Darstellung und Bewertung des Potenzials sowie Erfolgskriterien für eine nachhaltige Nutzung

Hofmann, Karina, Görz, Ines, Riedel, Peter, Heiermann, Martina, Franěk, Jan, Jelének, Jan, Holeček, Jan 17 May 2021 (has links)
Am Beispiel des grenzüberschreitenden Pilotgebiets Vogtland/West-Böhmen werden die im EU-Projekt GeoPLASMA-CE entwickelten harmonisierten Methoden geologischer 3D-Modellierung für die Darstellung des geothermischen Potenzials und dessen Nutzungskonflikte erläutert. Die Ergebnisse stellen Informationen zur Nutzbarkeit oberflächennaher Erdwärmesonden und Grundwasserwärmepumpen aufbereitet zur Verfügung und sollen die Akzeptanz bei Behörden, Planern und Bürgern stärken. Vor allem geologische Dienste können die international abgestimmten Methoden nutzen, um eigene Informationsportale zu erstellen. Redaktionsschluss: 02.03.2021
6

On the efficient and sustainable utilisation of shallow geothermal energy by using borehole heat exchangers

Hein, Philipp Sebastian 08 December 2017 (has links)
In the context of energy transition, geothermics play an important role for the heating and cooling supply of both residential and commercial buildings. Thereby, the increasingly and intensive utilisation of shallow geothermal resources bears the risk of over-exploitation and thus poses a future challenge to ensure the sustainability and safety of such systems. Particularly, the well-established technology of borehole heat exchanger-coupled ground source heat pumps is applied for the thermal exploitation of the shallow subsurface. Due to the complexity of the involved physical processes, numerical modelling proves to be a powerful tool to enhance process understanding as well as to aid the planning and design processes. Simulations can also support the management of thermal subsurface resources, planning and decision-making on city and regional scales. In this work, the so-called dual-continuum approach was adopted and enhanced to develop a coupled numerical model considering flow and heat transport processes in both the subsurface and borehole heat exchangers as well as the heat pumps’ performance characteristics, and including the relevant phenomena influencing the underlying processes. Beside the temperature fields, the efficiency and thus the consumption of electrical energy by the heat pump is computed, allowing for the quantification of operational costs and equivalent carbon-dioxide emissions. The model is validated and applied to a number of numerical studies. First, a comprehensive sensitivity analysis on the efficiency and sustainability of such systems is performed. Second, a method for the quantification of technically extractable shallow geothermal energy is proposed. This procedure is demonstrated by means of a case study for the city of Cologne, Germany and its implications are discussed. / Im Rahmen der Energiewende nimmt die Geothermie eine besondere Rolle in der thermische Gebäudeversorgung ein. Die zunehmende, intensive Nutzung oberflächennaher geothermischer Ressourcen erhöht die Gefahr der übermäßigen thermischen Ausbeutung des Untergrundes und stellt damit eine wachsende Herausforderung für die Nachhaltigkeit und Sicherheit solcher Systeme dar. Zur Erschließung oberflächennaher geothermischer Energie wird insbesondere die etablierte Technologie Erdwärmesonden-gekoppelter Wärmepumpen eingesetzt. Aufgrund der daran beteiligten komplexen physikalischen Prozesse erweisen sich numerische Modelle als leistungsfähiges Werkzeug zur Erweiterung des Prozessverständnisses und Unterstützung des Planungs- und Auslegungsprozesses. Zudem können Simulationen zum Management thermischer Ressourcen im Untergrund sowie zur Planung und politischen Entscheidungsfindung auf städtischen und regionalen Maßstäben beitragen. Im Rahmen dieser Arbeit wurde, basierend auf dem sogenannten ”dual-continuum approach” und unter Berücksichtigung des Einflusses der Wärmepumpe, ein erweitertes gekoppeltes numerisches Modell zur Abbildung der in Erdwärmesonden und dem Untergrund stattfindenden Strömungs- und Wärmetransportprozesse entwickelt. Das Modell ist in der Lage, alle relevanten Einflussfaktoren zu berücksichtigen. Neben den Temperaturfeldern im Untergrund und der Erdwärmesonde werden die Effizienz und damit der Stromverbrauch der Wärmepumpe simuliert. Damit können sowohl die Betriebskosten als auch der äquivalente CO 2 -Ausstoß abgeschätzt werden. Das Modell wurde validiert und in einer Reihe numerischer Studien eingesetzt. Zuerst wurde eine umfassende Sensitivitätsanalyse zur Effizienz und Nachhaltigkeit entsprechender Anlagen durchgeführt. Weiterhin wird ein Verfahren zur Quantifizierung des technisch nutzbaren, oberflächennahen geothermischen Potentials vorgestellt und anhand einer Fallstudie für die Stadt Köln demonstriert, gefolgt von einer Diskussion der Ergebnisse.
7

Investigation on the heat extraction performance of deep closed-loop borehole heat exchanger system for building heating

Chen, Chaofan 03 June 2022 (has links)
In recent years, deep geothermal energy has been widely exploited through closed-loop borehole heat exchanger system for building heating. In order to precisely evaluate the sustainable heat extraction capacity and the impact of different designs and operating parameters, two heat transfer models are implemented in the open-source scientific software OpenGeoSys (OGS), with respect to the Deep Borehole Heat Exchanger (DBHE) and Enhanced U-tube Borehole Heat Exchanger (EUBHE) system. Besides, three types of boundary conditions are implemented, including the constant inflow temperature, the constant heat extraction rate, and constant building thermal power that integrates the ground source heat pump (GSHP) module. By applying the two BHE models, the influence of different designs and operating parameters on the GSHP system is evaluated. The sustainable heat extraction capacity and efficiency of a deep EUBHE system are predicted. Moreover, its performance and efficiency are further compared against the 2-DBHE array system that has the same total borehole length. It is found that the soil thermal conductivity is the most important parameter in the design of DBHE and EUBHE systems. The sustainable specific heat extraction rate of the EUBHE system is 86.5 W/m higher than an array with 2 DBHEs. Under the building thermal load of 1.225 MW, the total electricity consumed by the EUBHE system is approximately 27 % less than the 2-DBHE array over 10 years. The average Coefficient of System Performance (CSP) value of the EUBHE system is 1.66 higher over 10 heating seasons. The two numerical models implemented in the OpenGeoSys software can be used to predict and optimize the thermal characteristics of the closed-loop DBHE and EUBHE systems in real projects.

Page generated in 0.0475 seconds