Spelling suggestions: "subject:"erosión diastólica"" "subject:"corrosión diastólica""
1 |
Ajuste de variables climáticas para el desarrollo de un modelo de erosión eólica para la región semiárida pampeanaPanebianco, Juan Esteban 17 May 2010 (has links)
La erosión eólica es un proceso de degradación irreversible del suelo, frecuente en ambientes secos. A fin de evaluar su magnitud y minimizar sus impactos, es necesario utilizar modelos que permitan predecirla en diferentes escenarios climáticos y de manejo. El ajuste de estos modelos requiere de medidas a campo bajo distintas condiciones ambientales y de manejo. Existen antecedentes locales y extranjeros que mencionan que los modelos disponibles y utilizables en la RSP (Región Semiárida Pampeana), WEQ y RWEQ, subestiman la erosión; es por ello que en este trabajo se analizaron dos factores, muy poco evaluados a nivel local e internacional, que pueden originar estas diferencias: metodologías no adecuadas de medición y cálculo de la erosión eólica en condiciones de campo y el uso de registros climáticos de baja resolución temporal en los modelos de simulación. Estas suposiciones responden, por un lado, al hecho de que los valores de erosión utilizados para ajustar los modelos disponibles fueron, generalmente, calculadas en base a mediciones de campo y utilizando metodologías de cálculo que no han considerado gran parte del material transportado cerca de la superficie del suelo y, por otro lado, a que los modelos disponibles utilizan, generalmente, registros climáticos de baja resolución temporal, principalmente de velocidades de viento, lo que disminuiría el efecto real de su energía erosiva. Por estas razones, los objetivos de este estudio fueron: 1) comparar los valores de transporte de masa resultantes de la aplicación de diferentes métodos de medición y cálculo en condiciones de campo, 2) evaluar la eficiencia del modelo RWEQ para predecir la erosión ocurrida durante tormentas individuales y en forma continua utilizando registros meteorológicos de diferente resolución temporal, y 3) evaluar la capacidad del modelo WEQ (2002) para simular los valores de erosión medidos utilizando factores C de diferente resolución temporal. Con la información así obtenida se evaluó la utilidad de los modelos para predecir erosión en la Región Semiárida Pampeana. La erosión eólica se midió a campo entre 1995 y 2008 por medio de colectores BSNE instalados en una parcela de 1 ha, sobre un Haplustol éntico de textura franco-arenosa fina. La parcela se mantuvo libre de vegetación y con rugosidad mínima mediante roturado frecuente. Los resultados obtenidos indicaron que el ajuste de tipo exponencial resultó un método muy robusto y flexible para el cálculo del flujo de masa en diferentes situaciones. La función racional y el modelo de Gauss simplificado presentaron limitaciones de distinto tipo. La interpolación lineal resultó ser una buena alternativa para el cálculo de masa, cuando los perfiles de viento son modificados por la presencia de rugosidad superficial o de cobertura superficial. La medición de la erosión a las tres alturas más comúnmente utilizadas en estudios de erosión eólica con colectores BSNE (aproximadamente 1 13, 50 y 150 cm ) puede producir subestimaciones de más del 45% del transporte de masa. Es por ello que deberían utilizarse, al menos, tres puntos ubicados entre la superficie del suelo y 1,5 metros de altura, incluyendo un punto lo más cercano posible a la superficie, y aplicar un factor de corrección para obtener valores de erosión relativamente precisos. La eficiencia de la versión estática y dinámica del modelo RWEQ, se evaluó utilizando registros de velocidad de viento medidos cada 5 minutos y cada hora. Al utilizar registros de velocidad del viento de menor resolución temporal, la erosión calculada con la versión estática del modelo RWEQ durante periodos discretos, de corta duración, se redujo un 44%, debido a una reducción del 21% en la energía eólica erosiva simulada por el modelo. Sin embargo, la correlación entre los valores medidos y simulados, tanto con datos de alta (5 minutos) como de baja resolución temporal (1 hora), fue comparable a la obtenida en otros lugares del mundo, incluso con modelos más modernos (0,42<R2<0,45; p <0,01; 0,34<NS<0,41; para datos de 5 minutos y 1 hora respectivamente). Los factores de la distribución de Weibull mensuales que utiliza la versión continua del modelo RWEQ para simular la energía eólica erosiva se redujeron al utilizar velocidades de viento medias horarias, lo que produjo una reducción drástica de la erosión mensual simulada. La versión continua del modelo RWEQ no resultó eficiente para calcular la erosión media mensual ocurrida en la parcela experimental en el contexto de la RSP, ni siquiera aumentando los factores de escala de la función de distribución de Weibull (R2 > 0,1; NS = -0,01). La erosión calculada con el modelo WEQ (2002) no se correlacionó con los datos surgidos de las mediciones de campo, para periodos menores a un año, aun utilizando factores C de distinta resolución. El uso de un factor climático promedio (1981-1990) produjo una subestimación del 50% de la erosión anual. Con factores climáticos anuales, la WEQ subestimó solamente un 23% y, además, se observó una correlación significativa entre valores anuales medidos y simulados (R2 =0,68; p<0,05). La WEQ resultó, por ende, un modelo relativamente eficiente para predecir la erosión en la RSP. La traducción de este modelo al español, la adaptación de algunas operaciones de labranza y la incorporación de datos climáticos históricos locales, permitió obtener una versión en castellano de la WEQ , denominado EWEQ (WEQ en Español). Para una rotación trigo - avena girasol, la EWEQ predijo una erosión anual de 7,1 Mg/ha en labranza convencional y cero en siembra directa, para condiciones climáticas promedio. Para un periodo de bajas precipitaciones los valores de erosión superaron el valor tolerable, tanto en labranza convencional (143 Mg/ha) como en siembra directa (24 Mg/ha). El modelo EWEQ resulta una herramienta efectiva para pronosticar la erosión eólica bajo distintos esquemas de manejo en la Región Semiárida Pampeana. Sin embargo, la erosión eólica es un fenómeno complejo dada su alta variabilidad temporal y espacial, y de difícil simulación, incluso con modelos más complejos que la EWEQ o la RWEQ. / Wind erosion is an irreversible soil degradation process, frequent in dry regions. In order to minimize its magnitude, it is necessary to use models to predict wind erosion under different management systems and climatic scenarios. The adjustment of these models requires the agreement between predicted and measured data. Local and foreign researchers mentioned that available models, of potential use in the Semiarid Pampas (RSP), like WEQ or RWEQ, tend to underestimate wind erosion. For this reason, the purpose of this work was to analyze the effect of two scarcely studied factors: inappropriate methodologies of wind erosion measurement and calculation under field conditions, and the use of low temporal resolution climatic records, mainly wind speed, in the simulation models. These assumptions are due to the fact that, on one hand, wind erosion amounts used to adjust the models were generally calculated using field measurements and calculations methodologies that did not consider most of the material transported near the soil surface. On the other hand, low temporal resolution data that are generally used by the models would diminish the real effect of the erosive energy of the wind. For these reasons, the objectives of this study were: 1) to compare mass transport values obtained from field measurements with different sampling and calculation procedures, 2) to evaluate the efficiency of the discrete and continuous version of RWEQ for simulating wind erosion using weather data with different temporal resolution, and 3) to evaluate the efficiency of WEQ (2002) for simulating wind erosion using C factors calculated with different temporal resolution. These analysis, allowed the evaluation of the utility of the models to predict erosion in the RSP. Wind erosion was measured in a 1 ha square field using BSNE sampling devices, between 1995 and 2008. The soil of the experimental site was a fine sandy loam Entic Haplustoll. The field was tilled periodically with a disc harrow in order to maintain it bare and with minimum surface roughness. Results indicated that a non linear regression using an exponential decay model, was a very robust and flexible method, and applicable for the calculation of the mass transport, mainly under low aerodynamic roughness conditions. The rational function and the simplified Gaussian model presented different types of limitations. The lineal interpolation method resulted a good alternative for mass transport the calculations when the mass flux profiles are complex, for example when the soil is rough or is covered by high amounts of plants residues or canopy. The measurement of wind erosion using the three sampling heights most commonly used in wind erosion studies using BSNE samplers (approximately 13, 50 and 150 cm ) can underestimate the total mass transport by 45%. Hence, at least three points located between the soil surface and 1.5 meters high, including a point as nearest as possible to the surface, should be used in combination with a correction factor to obtain relatively precise erosion values. The efficiency of the static and dynamic versions of the RWEQ, were evaluated using wind speeds recorded at 5 minute and hourly intervals. When using wind speed data of lower temporal resolution, the erosion values calculated with the static version of RWEQ during discrete periods, decreased by 44%, due to a reduction of 21% in the erosive wind energy simulated by the model. However, the correlation between the measured and simulated values, even using hourly data resulted comparable to results obtained by other authors, even with more complex models (0.42<R2<0.45, p <0.01; 0.34<NS<0.41). The monthly scale factors of the Weibull distribution function that are used in the dynamic version of the RWEQ to simulate the energy erosive wind energy decreased when using hourly wind speeds, and this produced a drastic reduction in the simulated erosion. The dynamic version of RWEQ was not efficient for simulating the mean monthly erosion measured in the experimental plot, not even increasing the scale factors of the Weibull distribution function (R2> 0.1, NS = -0.01). No correlation was found between measured values en erosion values calculated with WEQ spreadsheet version (2002) for periods smaller than one year, even using C factors of different temporal resolution. The use of an average C factor (1981-1990) produced an underestimation of 50% with respect to measured annual erosion. With annual climatic factors, WEQ underestimated only by 23% the annual erosion and, additionally, a very good correlation was found between measured and simulated values (R2 =0.68, p<0.05). Hence, WEQ resulted an efficient model to predict wind erosion in the RSP. WEQ (2002) was translated to Spanish, some operations were adapted to the Semiarid Pampas, and the climatic databases for this region were elaborated. This produced a WEQ version adapted to the region, called EWEQ (WEQ in Español). This model predicted no erosion for a wheat - oats - sunflower rotation during a high precipitation period. With averaged climatic conditions the model predicted an annual erosion slightly below the tolerable value (7.1 Mg/ha) in conventional till and zero in no-till. For a low precipitation period, the model predicted wind erosion above tolerable values for both conventional (143 Mg/ha) and no-till (24 Mg/ha). EWEQ is, therefore, a reliable model to simulate wind erosion under different climatic and management conditions in the RSP, though the model should be a tool to make the final decision as a complement of the experience and knowledge of the user.
|
2 |
Selección de indicadores de sustentabilidad relacionados con la erosión eólica para la región semiárida central argentina (RSCA)Colazo, Juan Cruz 16 March 2012 (has links)
En ambientes semiáridos la erosión eólica es el principal proceso de degradación del suelo que dificulta el desarrollo de sistemas sustentables. Es por ello, que el objetivo general de esta tesis fue: seleccionar indicadores edáficos del estado y la tendencia de degradación del suelo por erosión eólica, y generar modelos predictivos y explicativos de este proceso para la RSCA. Sus objetivos específicos fueron: 1) determinar la utilidad de la fracción erosionable (FE) y de la estabilidad estructural en seco (EES) como indicadores de susceptibilidad a la erosión eólica, 2) definir contenidos críticos de propieda-des de suelo con FE y EES, 3) validar características morfoló-gicas del suelo como índices del estado de degradación por erosión eólica, 4) evaluar el cambio textural del horizonte su-perficial como índice de la selección producida por erosión eóli-ca, 5) estimar el patrón de acumulación de arcilla en agrega-dos de suelos degradados de texturas contrastantes y 6) cuantificar las pérdidas relativas de nutrientes en función de la velocidad del viento y la duración de las tormentas. En ca-torce pares de suelos: uno cultivado (C) y otro sin cultivar (SC) comparamos: FE y EES; el espesor del horizonte A y la profundidad hasta la acumulación de carbonato; y la textura superficial (DTPT). En función de DTPT, seleccionamos tres suelos contrastantes, en los cuales comparamos sus texturas, pero con dispersión mínima (DTPMIN) y la relación DTPMIN/T. Por último, estudiamos el efecto de combinaciones contrastan-tes de velocidad y duración de tormentas en la pérdida relati-va de nutrientes usando un túnel de viento. FE y EES fueron indicadores de degradación útiles en suelos de textura inter-media, siendo sensibles al manejo y excediendo valores umbra-les en algunos suelos cultivados. FE y EES se relacionaron con carbono orgánico, óxidos de aluminio y arcilla en modelos que permitieron identificar valores críticos por debajo de los cuales la resistencia del suelo contra la erosión se reduce drástica-mente. El espesor del horizonte A fue menor en C que en SC en todos los sitios. La profundidad hasta la acumulación de carbonato fue similar entre C y SC. El contenido de limo + arcilla fue menor en C que en SC en la mayoría de los sitios, implicando un proceso de degradación irreversible. Los suelos de textura más fina perdieron mayor proporción de limo y los suelos de textura intermedia mayor proporción de arcilla. La relación DTPMIN/T en arcillas aumentó en C comparado con SC en el suelo franco lo que coincidió con una reducción de esta relación en partículas >250 μm, indicando una disminu-ción en la capacidad para preservar arcillas de procesos de suspensión en agregados de mayor tamaño. La simulación de eventos de erosión eólica con diferentes intensidades y dura-ciones no produjo pérdidas diferenciales de nutrientes. Con-cluimos que los indicadores seleccionados muestran que la erosión eólica ha disminuido la sustentabilidad de los sistemas productivos de la RSCA, y que el uso de índices relacionados con la resistencia del suelo a la erosión eólica con valores críticos asociados, será útil como indicador predictivo en de-terminados suelos. / In semiarid environments, wind erosion is the main soil degra-dation process which hinders the development of sustainable agro-ecosystems. Therefore, the general objective of this thesis was: to select soil indicators of the state and the ten-dency of soil degradation by wind erosion, and to generate predictive and explanatory models of this process to the RSCA. The specific objectives were: 1) to determine the uti-lity of the erodible fraction (FE) and the dry aggregate stabi-lity (EES) as indicators of the susceptibility to wind erosion, 2) to define critical contents of soil properties with FE and EES, 3) to validate soil morphological characteristics as indica-tors of the state of soil degradation by wind erosion, 4) to evaluate soil textural changes of topsoil as indicators of the selection produced by wind erosion in soils of different initial textures, 5) to estimate the patron of clay accumulation in aggregates of degraded soils of different textures and 6) to quantify the relative losses of soil nutrients in function of speed and duration of wind erosion events. In fourteen paired soils: one cultivated (C) and another uncultivated (SC), we compared: FE and EES; the A horizon thickness and the depth to carbonate accumulation; and soil texture (DTPT). In func-tion of DTPT, we selected three contrasting soils in which, we compared their textures, but using minimum dispersion (DTP MIN) and the quotient DTPMIN/T. Last, we studied the effect of contrasting combinations of wind speed and time using a portable wind tunnel. FE and EES were useful soil degradation indicators in medium textured soils, where they were sensible to management, exceeding threshold values in some cultiva-ted soils. FE and EES were related to organic carbon, alumi-num oxides and clay by logarithmic and exponential models which allow the identification of critical values below which
the soil resistance to wind erosion reduces drastically. The A horizon thickness was lower in C than in SC in all sites. The depth to carbonate was similar between C and SC. The con-tent of silt plus clay was lower in C compared to SC in the majority of soils, which means an irreversible soil degradation process. Finer soils lost higher proportion of silt and medium textured soils lost higher proportion of clay. The quotient DTP MIN/T to clay increased in C compared to SC in the loam soil, which agreed with a decreased of DTP MIN/T to >250 μm particles, indicating a reduction of the capacity to preserve clay from suspension processes in aggregates of larger size. The simulation of wind erosion events with different inten-sities and durations did not produced differential losses of soil nutrients. We concluded that the indicators selected show that wind erosion has reduced the sustainability of agricultural systems of the RSCA, and that the use of indicators related to soil resistance to wind erosion associated to critical values will be useful as a predictive indicator on medium-textured soils.
|
3 |
Modelling Aeolian Transport Processes: Implications for the Paleoclimate of the Coastal Atacama DesertFlores Aqueveque, Valentina Alejandra January 2010 (has links)
No description available.
|
4 |
Mecanismos de emisión de partículas finas (PM_10) por erosión eólica en suelos agrícolas de ArgentinaAvecilla, Fernando 20 March 2017 (has links)
La erosión eólica es uno de los procesos de degradación del suelo más importante en ambientes áridos y semiáridos de todo el mundo, incluyendo la pampa semiárida Argentina. El proceso de erosión involucra, al menos, dos mecanismos de transporte de material: saltación, que representa más del 85% de la erosión total del suelo, y suspensión, que forma plumas de polvo. Existe una interacción entre ambos procesos, ya que la suspensión depende, en gran medida, de la magnitud de la saltación porque ésta define la energía con la cual las partículas transportadas impactan sobre el suelo y, por ende, la magnitud de la emisión. La mayoría de los estudios que analizan la relación entre ambos tipos de transporte se han desarrollado considerando materiales de saltación únicos, generalmente granos de arena de tamaños uniformes. Existe poca información acerca de los mecanismos de transporte en suelos, en los cuales la composición de la fracción de saltación puede ser variable (desde granos minerales individuales a agregados), modificándose, por ende, sus efectos sobre la suspensión. Esto involucra el interrogante de cómo es la evolución de ambos procesos en función de la distancia recorrida por el viento. A fin de responder este interrogante se desarrollaron estudios en condiciones controladas de túnel de viento en suelos de texturas contrastantes, en los que se evaluó el efecto de la composición de la fracción de cada suelo sobre los transportes de saltación y suspensión. La suspensión se midió a través de la emisión de PM10 (partículas con tamaños ≤10 μm). Adicionalmente, la relación entre ambos transportes se analizó a partir de estudios desarrollados en condiciones de campo en los que se registraron eventos de erosión eólica, en dos suelos texturalmente distintos. Los resultados indican que la erosión aumentó al incrementarse la energía de impacto de las partículas en saltación y al disminuir la tasa de agregación de la fracción de saltación, es decir en suelos arenosos, cuya fracción de saltación estaba formada principalmente por granos de arena. En suelos texturalmente finos, con una fracción de saltación compuesta predominantemente por agregados, se produjo menor erosión debido a su menor energía de saltación. La erosión relativa (ER, cociente entre la erosión con y sin saltación) fue mayor en suelos de textura fina que en suelos arenosos, indicando que el proceso de saltación tuvo mayor efecto relativo en suelos texturalmente finos que en arenosos, en los cuales la erosión se debió, mayormente, a la alta susceptibilidad natural de los suelos a erosionarse. En los suelos texturalmente finos la erosión se debió, mayormente, a la fragmentación de agregados.
La eficiencia de saltación, parámetro que describe la capacidad que tienen los suelos para emitir partículas finas (PM10), fue explicada satisfactoriamente por las características intrínsecas de la fracción de saltación y de la superficie de cada suelo. La combinación de parámetros que relacionaron tales características (energía de abrasión, estado de agregación, proporción relativa de PM10 y de partículas potencialmente movilizadas por saltación) resultaron ser buenos indicadores del potencial de los suelos para emitir PM10. Suelos de textura fina, con mayores grados de agregación y de contenidos de PM10, presentaron mayor capacidad de emitir PM10 que suelos de texturas intermedias y arenosas, debido a su alta proporción de agregados en su fracción de saltación. El principal mecanismo de emisión de PM10 de los suelos finos fue la fragmentación y destrucción de los agregados movilizados por saltación, mientras que en suelos arenosos, lo fue la liberación de partículas de material fino adheridas a los granos de arena (LPA) y la movilización de material fino yacente sobre la superficie del suelo. En suelos de textura intermedia ocurre un solapamiento de ambos mecanismos.
La emisión total de PM10 se incrementó en función de la distancia en los tramos iniciales de su recorrido (50 m) en mayor medida en el suelo arenoso que en el franco debido al alto flujo de material transportado por saltación. La alta energía de impacto de las partículas en saltación produjo un mayor rompimiento de agregados en el suelo arenoso, con mayor susceptibilidad a ser erosionado. Hubo cambios en la composición del material movilizado por saltación en función de la distancia recorrida en los distintos suelos. En el suelo franco, la proporción de agregados disminuyó con la distancia recorrida debido a la destrucción progresiva de los agregados. Hubo un aumento sostenido de la cantidad de material transportado por saltación con la distancia, indicando que la destrucción de los agregados provocó altas tasas de emisión de PM10. En el suelo arenoso estos cambios fueron menos evidentes, indicando que la liberación de PM10 por destrucción de agregados fue menor.
Las variables meteorológicas afectaron de forma diferencial, en los distintos suelos, a las emisiones de PM10. Sin embargo, se comprobó que la velocidad máxima del viento (ráfagas) y la humedad relativa del aire fueron las variables meteorológicas que afectaron de forma más significativa los procesos de emisión de PM10 en ambos suelos. La influencia de dichas variables estuvo condicionada por factores edáficos como textura y condiciones de la superficie al momento de producirse el evento erosivo. / Wind erosion is one of the processes of soil degradation more important in arid and semi-arid environments around the world, including the semiarid pampa of Argentina. The erosion process involves, at least, two mechanisms for transport of material: saltation, representing more than 85% of the total erosion of soil, and suspension, which forms dust clouds. There is an interaction between both processes, suspension depends, largely, of the magnitude of the saltation because this defines the energy with which transported particles have an impact on the soil and, hence, the magnitude of the emission. Most of the studies that analyse the relationship between the two types of transport have been developed considering saltation materials as singles, usually sand grains of uniform sizes. There is little information about the transport mechanisms in soils, in which the composition of the saltation fraction can be variable (from individual mineral grains to aggregates), changing, therefore, their effects on the suspension. This involves the question of how it is the evolution of both processes according to the distance covered by the wind. In order to answer this question were developed studies in controlled conditions of wind tunnel in soils of contrasting textures, in which it was evaluated the effect of the composition of the saltation fraction of each soil on the transport of saltation and suspension. The suspension was measured through the emission of PM10 (particles with sizes ≤10 μm). In addition, the relationship between the two transport was analyzed from studies developed in field conditions where wind erosion events were registered in two different textured soils.
The results indicate that erosion increased with increasing impact energy of particles in saltation and decrease the rate of aggregation of the saltation fraction, ie in sandy soils, which fraction saltation was composed mainly of sand grains. In fine textural soils, with a saltation fraction composed predominantly of aggregates, there was less erosion due to its lower energy saltation. The relative erosion (ER, ratio between erosion with and without saltation) was higher in fine-textured soils than in sandy soils, indicating that the process of saltation had greater relative effect on fine textural soils than in sandy soils, where erosion it is, mainly, due to high natural susceptibility of soils to wind erosion. In fine soils, the erosion was, mostly, due to the fragmentation of aggregates.
The saltation efficiency, parameter that describes the capacity of the soil to emit fine particles (PM10), was explained satisfactorily by the intrinsic characteristics of the saltation fraction and of the surface of each soil. The combination of parameters that related such characteristics (abrasion energy, state of aggregation, relative proportion of PM10 and particles potentially mobilized by saltation) proved to be good indicators of the potential of the soil to emit PM10. Fine textured soils, with higher levels of aggregation and content of PM10, presented a higher capacity to emit PM10 that intermediate and sandy soils, due to its high proportion of aggregates in the saltation fraction. The main mechanism of PM10 emission in the fine textured soils was the fragmentation and destruction of the aggregates mobilized by saltation, while in sandy soils, it was the release of particles of fine material adhering to the sand grains (LPA) and mobilization of fine material lying on the soil surface. In intermediate textured soils occurs an overlap of both mechanisms.
The total emission of PM10 increased according to the distance in the initial stretches of its trip (50 m) to a greater extent in the sandy that in the loam soil due to the high flow of material transported by saltation. The high impact energy of the particles in saltation produced a greater breakdown of aggregates in sandy soil,
with greater susceptibility to be eroded. There were changes in the composition of the material mobilized by saltation depending on the distance travelled in the different soils. In the loamy soil, the proportion of aggregates decreased with distance due to the progressive destruction of the aggregates. There was a sustained increase in the amount of material transported by saltation with the distance, indicating that the destruction of aggregates caused high rates PM10 emission. In the sandy soil these changes were less evident, indicating that the release of PM10 by destruction of aggregates was lower.
The meteorological variables affected differentially, in different soils, the PM10 emissions. However, it was found that the maximum wind speed (gusts) and air relative humidity were the meteorological variables that affected more significantly the PM10 emission processes in both soils. The influence of these variables was conditioned by edaphics factors such as soil texture and a surface condition at the time of the erosive event occurs.
|
5 |
Estudio del proceso de erosión eólica en el sudoeste bonaerense : validación de un modelo predictivoBouza, Mariana Eve 03 October 2014 (has links)
La erosión eólica es uno de los graves problemas ambientales, sociales y económicos que debe enfrentar la región semiárida de nuestro país, especialmente cuando las tierras son destinadas a la agricultura. En este contexto, el sudoeste de la provincia de Buenos Aires es una de las áreas más comprometidas. La afectación en grado moderado a severo ya ha alcanzado a 1,20 millones de hectáreas en relación a una superficie potencial de 10,50 millones de hectáreas.
El proceso de erosión eólica degrada al suelo en forma irreversible, involucra una pérdida masiva de una parte del perfil y una disminución de los indicadores edáficos determinantes de la fertilidad. Como consecuencia, el suelo disminuye su productividad que, para el caso particular del SO bonaerense expresado en términos de rendimiento de trigo, representa una reducción en la cosecha de 50 kilogramos de grano por cada centímetro de suelo perdido. Las causas de la erosión eólica de los suelos se encuentran, principalmente, en sus características intrínsecas, que los hacen muy susceptibles a la deflación en situaciones de sequías prolongadas y los fuertes vientos. A todo esto se le suma la agricultura convencional, practicada en forma mayoritaria en la región, que aumenta el riesgo por dejar la superficie del suelo prácticamente descubierta.
Muchas de las investigaciones que se hicieron sobre erosión eólica han sido las bases para el desarrollo de los modelos de predicción. Entre los más conocidos aparecen: la “Ecuación de la erosión eólica” (WEQ), la “Ecuación revisada de la erosión eólica” (RWEQ) y el “Sistema de predicción de erosión eólica” (WEPS). En general, los modelos interpretan los mecanismos que intervienen en el proceso, identifican los factores más influyentes y permiten, como su aplicación más importante, seleccionar manejos adecuados para minimizar las pérdidas de suelo. Consecuentemente, hoy en día, son considerados como una herramienta fundamental para guiar la producción agropecuaria hacia la sustentabilidad.
Los objetivos generales de este trabajo son:
a) Analizar el comportamiento de las variables climáticas más importantes que intervienen en el proceso de erosión por viento; estudiar el comportamiento del sedimento eólico y las relaciones asociadas a parámetros y propiedades del suelo.
b) Medir cuantitativamente las pérdidas de suelo por erosión eólica de un Haplustol típico y compararlas con las predicciones realizadas por los modelos: Ecuación de erosión Eólica (WEQ) y Ecuación revisada de erosión eólica (RWEQ).
Las mediciones de erosión eólica se llevaron a cabo en una parcela de 2,25 hectáreas, ubicada en el campo experimental “Napostá” del Departamento de Agronomía (UNS). El suelo fue mantenido libre de toda vegetación y sin rugosidad superficial durante los 3 años de estudio. Para las mediciones de erosión eólica se emplearon colectores de partículas de suelo BSNE (bandeja simple), BOSTRA y Colector Superficial. La información meteorológica necesaria provino de una estación automática Davis Vantage Pro - configurada para registrar todos los datos a intervalos de 30 minutos-.
Durante el período de estudio (2009 a 2011) las condiciones climáticas fueron totalmente favorables para la deflación del suelo. La mayoría de las tormentas eólicas tuvieron un promedio de alrededor de 6 eventos erosivos (períodos de 30 minutos con vientos mayores 6,7 m s-1 a 2 metros de altura). El año 2009 fue el más severo, durante el mismo se estudiaron 14 tormentas que sumaron 517 horas con viento por encima de la velocidad umbral. La precipitación de ese año resultó ser un 22% del registro histórico, situación que favoreció al proceso de erosión. La velocidad media del viento durante los eventos erosivos fue de 8,86 m s-1, mientras que la máxima media fue de 16,53 m s-1, con un registro que alcanzó los 23 m s-1. La dirección predominante del viento, en el 86% de los casos, fue del sector NO-NNO. En este aspecto se encontró una asociación entre la fluctuación de la dirección del viento y la recolección de sedimentos en los colectores. Cuando la dirección fue variable, el sedimento eólico tuvo tendencia a acumularse en el centro de la parcela; cuando fue permanente de un sector, el depósito de partículas aumentó con la distancia recorrida por el viento.
Las fracciones granulométricas se asociaron a la cantidad total de material recolectado, que a su vez se relacionó con la magnitud de la erosión eólica, y a la altura de muestreo. La concentración de la fracción más gruesa aumentó a medida que se incrementó la cantidad de material captado -eventos erosivos de mayor magnitud- y disminuyó gradualmente su proporción con la altura de registro. Mientras que la concentración de las fracciones más finas aumentó con la altura y disminuyó cuando se incrementó la erosión eólica.
En los sedimentos, la concentración de materia orgánica siempre fue mayor que la del suelo de origen, marcando una tasa de enriquecimiento de 1,16 como promedio general para los tres años de estudio. También se observó una variabilidad con la altura de medición, las mayores concentraciones se obtuvieron en los colectores ubicados en la parte superior. Por su parte, los mapas de distribución espacial mostraron un aumento de la concentración siguiendo el recorrido del viento dominante. Además se observó una relación significativa inversa entre el contenido de materia orgánica y el de arena, y directa con la arcilla y con el limo.
La cantidad de material erosionado [q (kg m-2)] disminuyó con la altura de entrampamiento, siguiendo un modelo exponencial y= 2,16e-5,47x, (r2=0,91). La movilización total de las partículas fue mayoritariamente (80%) por rodadura y saltación baja (0,07 m).
El flujo de masa [Q (kg m-1)] medido a alturas fijas aumentó horizontalmente con la distancia. En la parcela, se observó que los mayores incrementos de Q se registraron entre 75 y 125 m de recorrido del viento. No obstante, a esa distancia no se alcanzó el valor límite, llamado capacidad de transporte o capacidad de carga.
Las pérdidas totales de suelo por erosión eólica medidas en el transcurso de 30 tormentas, durante el período 2009-2011, fueron en promedio de 36,83 t ha año-1, lo que significó una pérdida de 9,2 mm del horizonte superficial.
La estimación de la cantidad de suelo erosionado efectuada con WEQ presentó una pérdida de suelo media anual de 29,60 t ha-1 presentando un 80 % de predicción respecto a lo medido a campo. Cuando se simuló la pérdida de suelo con RWEQ, si bien la correlación fue significativa (R2=0,77; p< 0,05), los resultados sobreestimaron los datos obtenidos a campo en la mayoría de los casos. / Wind erosion is one of the serious environmental, social and economic problems that the semi-arid region in our country must face, particularly when lands are used for agriculture. In this context, the southwest of the Buenos Aires province is one of the most endangered areas. In fact, 1.20 million hectares have already been moderately to severely affected on a surface of 10.50 million hectares potentially at risk.
The wind erosion process degrades the soil irreversibly and involves a massive loss of the upper part of the profile and a decrease of the edaphic indicators which determine fertility. As a consequence, soil productivity decreases, which in the particular case of the SW of the Buenos Aires province and expressed in terms of wheat yields, represents a harvest reduction of 50 kilograms of grain per centimeter of lost soil. Wind erosion of soils is mainly related to their intrinsic characteristics, which make them very susceptible to deflation under conditions of prolonged droughts and strong winds. In addition, conventional agriculture, practiced by most agricultural producers in this region, increases the risk by leaving the soil surface practically uncovered.
Many research works on wind erosion have formed the basis for the development of prediction models. Among the best-known ones are the “wind erosion equation” (WEQ), the “revised wind erosion equation” (RWEQ) and the “wind erosion prediction system” (WEPS). In general, models interpret the mechanisms involved in the process, identify the most influential factors and enable —as their most important application— selection of adequate management to minimize soil loss.
Consequently, they are nowadays considered an essential tool to direct agricultural production towards sustainability.
The general aims of this work are:
a) To analyze the behavior of the most important climate variables involved in the wind erosion process; to study the behavior of wind erosion sediments and the relationships with soil parameters and properties.
b) To quantitatively measure soil loss as a result of wind erosion in a Typic haplustoll and compare it with predictions made by the WEQ and RWEQ models.
Wind erosion measurements were carried out in a 2.25-ha plot located in the experimental field “Napostá” which belongs to the Departamento de Agronomía, UNS. The soil was kept free of vegetation and without roughness during the 3 years of the study. For wind erosion measurements, Big Spring Number Eight (BSNE) (simple tray) collectors, Bottle Sediment Traps (BOSTRA) and surface collectors (SC) were used. Meteorological information was gathered from a Davis Vantage Pro automatic weather station configured to record data at 30-minute intervals.
During the study period (2009-2011), weather conditions were highly favorable to soil deflation. Most wind storms registered an average of 6 erosive events (30-minute periods with winds greater than 6.7 m s-1 at a height of 2 m). The most severe year was 2009, during which 14 storms amounting to 517 hours of wind above the threshold speed were studied. Rainfall that year was 22 % of the historical record, a situation which favored the erosive process.
Mean wind speed during the erosive events was 8.86 m s-1, while the mean maximum speed was 16.53 m s-1, with one record reaching 23 m s-1. The prevailing wind direction, in 86 % of the cases, was from the NW-NNW. In this regard, a relationship between wind direction fluctuation and sediment collection was found.
When the wind direction was variable, the wind erosion sediments tended to accumulate in the center of the plot; when it was stable from one direction, particle deposit increased with the distance traveled by the wind.
Particle-size fractions were related to the total quantity of the collected material, which in turn was associated to the magnitude of wind erosion, and to the sampling height. The concentration of the coarse fraction rose as the quantity of the collected material increased —greater erosive events— and its proportion gradually decreased with the sampling height; while the concentration of fine fractions rose with height and decreased as wind erosion increased.
Organic matter concentration in sediments was always greater than that of the original soil, indicating an enrichment rate of 1.16 as a general average for the 3 years of the study. Variability in relation to the sampling height was also observed; the greatest concentrations were obtained in the upper collectors. Moreover, spatial distribution maps showed an increase in the concentration following the direction of the prevailing wind. Also, the organic matter content showed a significant inverse relationship with the sand content and a direct relationship with the clay and silt content.
The quantity of eroded material [q (kg m-2)] decreased with the capture height, following an exponential model y= 2.16e-5,47x, (r2=0.91). Total particle transport was mainly (80 %) through creeping and low saltation (0.07 m).
Mass flux [Q (kg m-1)] measured at fixed heights increased horizontally with distance. In the plot, the greatest increases of Q were observed between 75 and 125 m of the distance traveled by the wind. However, the limit value —called transport capacity or loading capacity— was not reached at that distance.
Total soil loss as a result of wind erosion measured in the course of 30 storms, during the 2009-2011 period, was in average 36.83 t ha year-1, which meant a loss of 9.2 mm of the surface horizon.
The estimation of the quantity of eroded soil made with the WEQ indicated a mean soil loss of 29.60 t ha year-1, showing an 80 % prediction in relation to the field measurements. When soil loss was simulated with the RWEQ, although the correlation was significant (R2 = 0.77; p < 0.05), in most cases results overestimated the field-collected data.
|
6 |
Incidencia económica de la degradación del suelo por erosión eólica : el caso de los sistemas productivos de la estepa pampeana semiáridaLorda, Héctor 14 May 2009 (has links)
El suelo es uno de los componentes principales de los agro-ecosistemas (capital natural), que junto a las demás formas de capital, brindan servicios ecológicos (SE) destinados a las necesidades y bienestar humanos. La Región Semiárida Pampeana (RCP), en la Provincia de La Pampa, posee suelos poco desarrollados, recibe escasas lluvias y vientos de moderados a fuertes. Estas condiciones son propicias para el proceso de erosión eólica potencial, es decir la pérdida de suelo por acción del viento. Esta pérdida implica la reducción de la fertilidad física y química, con la consecuente reducción en el flujo de los SE. Las condiciones de manejo del suelo, definen la erosión eólica actual, la cual puede cuantificarse experimentalmente. Adicionalmente, se puede determinar la composición química de estos residuos. El avance de la agricultura, la intensificación de los sistemas productivos y prácticas de laboreo tradicionales inapropiados, hacen de este fenómeno un proceso irreversible, cuando se supera valores umbrales considerados moderados. Se expresa en toneladas por hectárea (t/ha). El productor no considera entre sus costos de producción, los SE del suelo que esta utilizando, los que toma de un stock inicial y sobre los que tampoco existe un precio de mercado de referencia. Una de las hipótesis de trabajo fue que las pérdidas por erosión actual, en rotaciones y en el ciclo de los cultivos agrícolas, pueden alcanzar niveles moderados a severos. La incorporación en los costos directos de cultivos agrícolas, del nitrógeno (N) y fósforo (P) involucrados en el material erosionado, por su magnitud puede causar niveles de quebranto en el margen bruto (MB) final. El costo de reemplazo de estos nutrientes se lo denominó Indicador Ambiental (IA) y se estimó, monetariamente, a través de su equivalente en nutrientes de fertilizantes.
Otra hipótesis planteada, sugiere que es posible plantear actividades tecnológicamente superadoras, que reduzcan los niveles de erosión, mejoren el balance de algunos nutrientes esenciales y que se integren en un sistema productivo ambiental y económicamente sustentable. Para estimar la tasa de erosión eólica, se utilizó el modelo empírico identificado en castellano con las siglas EWEQ (Wind Erosion Equation), el cual fue cargado con secuencias de cultivos reales (rotaciones), con longitud de tiempo variables y para 6 sitios de la estepa pampeana: 3 sitios de la denominada Subzona Castex (Castex Norte, Castex Sur-Santa Rosa y Castex Sur-Anguil); 2 sitios de la Subzona Pico (Pico Norte y Pico Sur) y 1 sitio de la Subzona Guatrache. El modelo devuelve la tasa de erosión promedio anual de toda la rotación, como también la tasa de erosión del ciclo de cada cultivo agrícola (t/ha ciclo), aprovechando el detalle en las fecha precisas entre operaciones. Con estos registros, se estimaron los costos directos de todos los ciclos disponibles de trigo, girasol, soja y maíz. Utilizando los precios de insumos y productos de Febrero de 2008, se calculó la incidencia del IA, en los costos directos y sus efectos en el MB final.
El plan de optimización se realizó para las condiciones agroclimáticas, dimensiones y caracterización de sistemas productivos del Sitio Castex Norte (Subzona Castex), a través de una matriz de programación lineal (PL). Se diseñaron previamente los planteos técnicos basados en tecnologías disponibles, los resultados económicos (MB) y el balance de N, P y carbono orgánico (CO) de cada actividad.
La tasa de erosión eólica estimada para cultivos en siembra convencional (SC) en la primera parte, fue un insumo directo de la matriz, utilizada como restricción ambiental. Las pérdidas de N y P involucradas por esta vía, formaron parte de los egresos, dentro del balance de nutrientes. Fue necesario simular en el EWEQ, aquellas alternativas tecnológicamente mejoradas, no disponibles entre los registros reales y donde predominó la siembra directa (SD) y estrategias de fertilización. También se estimaron los índices para algunos de los recursos forrajeros de la actividad ganadera (invernada). Se puso énfasis en las restricciones ambientales, mientras que desde lo técnico-agronómico no hubo limitaciones en las restricciones de capital de trabajo ni diferenciación en el tipo de suelo. Para esta segunda etapa, se utilizaron precios de insumos de 2006 y las cotizaciones del disponible 2007 para los productos. Se detectaron menores tasas de erosión eólica en SD que en SC. En el Sitio Guatraché se redujo de 10,0 t/ha en una rotaciones en SC a 5,6 t/ha en SD (44% menos). También se redujo en más de un 50% entre ciclos de cultivos, dentro de una misma rotación, al utilizar SD. En todos los casos, significó un pasaje del grado de erosión de moderado/severo a erosión ligera. El costo de reemplazo del IA, fue variable entre cultivos, entre sistema de siembra (SD vs SC) e influenciado por el nivel de costos directos totales. En los cultivos conducidos en SC, con tasas de erosión eólica cercanas y levemente superiores a 8 t/ha ciclo, la participación del IA fue de 20 a 40 % en trigo; 15 a 25% en maíz; 20 a 35% en girasol y de 20 a 30% en soja. Con tasas de erosión 4 a 6 t/ha ciclo en SD, el IA tuvo una participación del 8% en maíz; del 8 a 16 % en trigo y del 8 a 21% en girasol. Respecto al efecto sobre el MB inicial, solo se produjeron quebrantos cuando los rendimientos de trigo fueron inferiores a 1t/ha y un caso de maíz, con una producción de 1,4 t/ha. Las actividades propuestas en la matriz de PL permitieron detectar déficits generalizados en el balance de nutrientes, en aquellos cultivos conducidos con esquemas tradicionales de manejo tecnológico y/o de escaso nivel de fertilización. Por el contrario, la actividad ganadera mostró todos los índices positivos. Sobre una explotación de 506 ha, la mejor solución de la matriz de PL quedo integrada por 143 ha de trigo en SC con aplicación de fertilizante apuntando a máximo rendimiento (TrSCDMR); 170 ha de maíz en SD y de alta producción (MaSDAP) y 193 ha de girasol en SD con fertilización de máxima respuesta (GiSDFER). Este sistema agrícola alcanzó el máximo margen bruto total (MBT) con una erosión eólica promedio anual de 4,9 t/ha. Los beneficios ambientales de la ganadería no se aprovecharon frente a un precio promedio de 2,70 $/kg de carne. Sin embargo, los costos de sustitución indicaban que la invernada podía participar con un precio de 3,46 $/kg de carne (+28%). Siendo un valor esperable dentro de la volatilidad de precios de la serie 2007/2008, se simuló un escenario mixto, donde la invernada participó con 245 ha, la misma alternativa de girasol en SD con 153 ha, y el mismo maíz de alta producción con 143 ha. Entre el sistema agrícola y el mixto, el MBT se redujo solo el 1% ($ 390.660 vs. $386.795 respectivamente).
Palabras clave: erosión eólica, servicios ecológicos, programación lineal, balance de nutrientes, nitrógeno, fósforo. / Soil is one of the main components of agro-ecosystems (natural capital). Together with other forms of capital, provides ecological services (ES) for human needs and welfare. The Semi-Arid Pampas Region (SPR) has poorly developed soils, receives little rain and moderate to strong winds. These conditions are favourable for the process known as potential wind erosion, namely the loss of soil by wind action. This loss implies a reduction of both physical and chemical fertility, with consequent reduction in the flow of those ES, mentioned above. The conditions of soil management, define the current wind erosion, which can be quantified experimentally. Additionally, chemical composition of these residues can be determined. It is expressed in tons per hectare (t/ha).The advancement of agriculture, the intensification of production systems and traditional inappropriate tillage practices, generates an irreversible phenomenon, when it exceeds threshold values, considered moderate. Farmers do not consider among their production costs, the ES they are using, which they take from an initial stock. In addition, there is no price market reference.
One of the working hypothesis was that losses caused by current wind erosion, in both rotations and crops cycle, can achieve moderate to severe levels. The incorporation into crops direct costs of nitrogen (N) and phosphorus (P) involved in the eroded material might produce actual gross margin (GM) losses. The replacement cost of these nutrients was named in this research as Environmental Index (EI) and it was considered, in money terms, through its equivalent in nutrients from fertilizer. Another hypothesis suggests that it is possible to raise productive activities technologically enhanced that reduces the levels of erosion, improve the balance of some essential nutrients and can be integrated into a production system, environmentally and economically sustainable. The empirical model Wind Erosion Equation (EWEQ) was used to estimate wind erosion rate. Its inputs were farmers real data, including crops seasonal sequences (rotations). Records varied in lengths of time and came from six places in the Pampas Steppe: three places in the so-called Sub-Zone "Castex" (North Castex site, South-Castex- Santa Rosa site and South Castex-Anguil site), two in the Sub-Zone "Pico" (North Pico site and South Pico site) and one site of Sub-Zone "Guatraché". The model returns the average annual erosion rate of the entire rotation, and the cycle crop erosion rate (t/ha cycle). This last rate takes advantage of the detail in the precise date information between machinery operations, within the model. These records, also allowed estimating direct costs of all the available crops cycles of: wheat, sunflower, soybeans and corn. Using inputs and commodities prices of February 2008, the incidence of EI in direct costs and its impact on the final GM, was calculated.
The optimization plan was carried out for agro-climatic conditions, farm size and production systems patterns of North Castex Site (Sub-Zone "Castex"), through a matrix of linear programming (LP). Previously, technical set up approaches were designed, based on available technology, also the economic performance (GM) and the balance of N, P and organic carbon (OC) of each activity. The estimated wind erosion rate estimated for crops in the first part of the study and involving conventional tillage (CT) sowing system was a direct input for the matrix, used as environmental constraints. The concentration of N and P involved in this losses, were part of discharges within the balance of nutrients. It was necessary to use the EWEQ, to simulate those alternatives technologically enhanced, witch no records were available, and where no-tillage (NT) and fertilization strategies have been used. It was also estimated rates for some of the forage resources of livestock activity (fattening steers). Emphasis was placed on the environmental constraints, while no limitations were set from those technical-agronomic constraints such as working capital or differentiation in the type of soil. For this second stage is used pricing of inputs, 2006 and 2007 current prices of commodities. Wind erosion rates resulted lower in NT than in CT. In Site Guatraché the index varied from 10.0 t/ha year-1 in a CT rotation, to 5.6 t/ha year-1 in NT rotation (44% less). It also declined by over 50% between cycles of crops, within a single rotation, by using NT. In all cases, it was an overtaking from a moderate/severe degree of erosion to light erosion rate. The replacement cost of EI, varied between crops, between sowing system (NT vs CT) and highly influenced by the level of total direct costs. Those crops conducted in CT, with wind erosion rates nearby and slightly higher than 8 t/ha cycle-1, the EI share in costs was 20 to 40% in wheat, 15 to 25% in corn, 20 to 35% in sunflower and 20 to 30% in soybeans. With erosion rates of 4 to 6 t/ha cycle-1, in NT cycle, the EI had an 8% share of corn costs, from 8 to 16% in wheat and from 8 to 21% in sunflower. Concerning to the effect on initial GM, economic losses occurred only when the yields of wheat were lower than 1t/ha and in the case of corn, one case was found when production reached 1,4 t/ha. The proposed activities in the matrix of LP helped to detect widespread deficits in the balance of nutrients in crops those conducted with traditional patterns of technological management and/or low levels of fertilization. By contrast, livestock activity showed all positive indexes. On a farm of 506 hectares, the best solution of the matrix of LP resulted in 143 ha of CT wheat with fertilizer application aimed at maximum performance (TrSCDMR); 170 ha of NT corn and high production (MaSDAP) and 193 ha of NT sunflower with the highest expected fertilization response (GiSDFER). This "grain cropping system reached a maximum total gross margin (TGM) with an average annual wind erosion rate of 4.9 t/ha year-1. The environmental benefits of livestock are not exploited, facing an average price of 2,70 $/kg of live weight. However, the "shadow price" indicated that livestock activity might take part of the solution with a price of 3,46 $/ kg of live weight (+28%). Since this was an expected value along 2007/2008 meat market prices series, it was simulated a "crop and beefs mixed system where livestock participated with 245 ha, along with 153 ha of former NT sunflower alternative, and 143 ha of the same high production corn. When comparing the "grain cropping and "crop and beefs mixed systems, TGM decreased only 1% ($ 390,660 vs. $ 386,795, respectively).
|
7 |
Integración por medio de geotecnologías de la información ambiental en estudios de degradación de los suelos para los partidos de Villarino y Patagones, provincia de Buenos Aires-ArgentinaWinschel, Cristina Inés 12 December 2017 (has links)
La presente investigación consiste en una contribución al desarrollo de metodologías que amplían la aplicabilidad de los Sistemas de Información Geográfica (SIG), la teledetección y las bases de datos al análisis territorial. Específicamente se centra en el análisis de la interacción suelo-paisaje en el proceso de avance de la frontera agrícola producto de esta relación. La humanidad transforma y modifica las coberturas del suelo y amplía el área de acción hacia un entorno con suelos marginales productivos causando erosión y degradación. En el presente estudio se analizaron los cambios de uso y cobertura y los procesos relacionados con la erosión eólica entre 1975 y 2015.
La investigación se lleva a cabo en los partidos de Villarino y Patagones en el sur de la provincia de Buenos Aires, Argentina. A pesar de la fragilidad de esta región determinada por las condiciones climáticas, el tipo de suelo y la actividad del hombre, la principal actividad productiva es el cultivo de cereales (principalmente trigo) y pastos para el ganado. La sostenibilidad futura de este uso agrícola está condicionada por el mal uso y manejo del suelo con escasas medidas de conservación.
En este contexto, uno de los principales resultados de la investigación es la integración de la información a través de un SIG, desarrollado a una escala semi-detallada para todo el territorio de estudio, con el fin de determinar las posibles áreas vulnerables a degradarse y predecir futuros progresos y cambios potenciales de la frontera agrícola. Además, establece la estructura sobre la cual desarrollar base de datos espaciales con información de suelo más detallada. Otras aportaciones se obtienen del conjunto de metodologías, basadas en el análisis y la clasificación multitemporal de imágenes satelitales y la preparación de Modelos Digitales de Elevación (DEM). Toda esta información se gestiona desde un SIG que permite combinar variables y crear nuevas alternativas cartográficas que conduzcan al análisis de procesos de degradación del suelo y predicción de futuros cambios en el uso y coberturas del suelo.
La aplicación de estas metodologías al área de estudio ha confirmado la importante influencia de la acción antrópica en la aceleración de los actuales procesos de degradación del suelo.
La investigación reafirma la importancia de combinar técnicas de campo y de laboratorio con métodos de teledetección para la adquisición de datos, formando una verdadera relevamiento regional integrado que contribuye significativamente al conocimiento de los procesos de erosión y degradación del suelo. Además estas técnicas permiten modelar el paisaje para una predicción de los posibles escenarios futuros de los diferentes cambios de utilidad y cubiertas del suelo que conducen a generar áreas de mayor vulnerabilidad a degradarse. / The present research consists of a contribution to the development of methodologies that extend the applicability of Geographic Information Systems (GIS), remote sensing and databases to territory analysis; specifically soil-landscape interaction in the process of the agricultural frontier advancing product of this relationship. Mankind transforms and modifies the coverings of the soil and expands the area of action towards an environ with productive marginality soils causing both erosion and degradation. In the present study were analyzed the use and coverage changes and the processes related to wind erosion from 1975 to 2015.
The research is carried out in Villarino and Patagones parties in the south of Buenos Aires province, Argentina. Even though the fragility of this region due to climatic conditions, soil type and farmers land management the main productive activity is the cultivation of cereals (mainly wheat) and pastures for livestock. Although future sustainability of this agricultural use is conditioned due to the misuse and soil management with a few or none conservation. In this context one of the main results of the research is the integration of the information through GIS, developed at a semi-detailed scale of the entire study territory, in order to determine possible degradation of vulnerable areas and to predict future potential progress and changes in the agricultural frontier.
Moreover it establish the structure on which to develop spatial databases with more detailed soil information. Other contributions are obtained from the set of methodologies, based on the analysis and multitemporal classification of satellite images and the preparation of Digital Elevation Models (DEM). All this information is managed from a GIS that allows to combine variables and to create new cartographable alternatives leading to the analysis of processes of soil degradation and prediction of future changes in the use and coverings of soil.
The application of these methodologies to the study area has confirmed the important influence of anthropic action in the acceleration of current soil degradation processes.
The research confirms the importance of combining field and laboratory techniques with remote sensing methods for data acquisition, forming a real integrated regional survey that makes a significant contribution to the knowledge of soil erosion and degradation processes. Furthermore these techniques allow the modeling of the landscape for a prediction of the possible future scenarios of the different changes of utility and coverings of soil that lead to generate areas of greater vulnerability to be degraded.
|
Page generated in 0.0552 seconds