• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 11
  • 11
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image and video coding for noisy channels

Redmill, David Wallace January 1994 (has links)
No description available.
2

Robust video coding methods for next generation communication networks

Chung How, James T. H. January 2001 (has links)
No description available.
3

Efficient transmission of error resilient H.264 video over wireless links

Connie, Ashfiqua Tahseen 11 1900 (has links)
With the advent of telecommunication technology, the need to transport multimedia content is increasing day by day. Successful video transmission over the wireless network faces a lot of challenges because of the limited resource and error prone nature of the wireless environment. To deal with these two challenges, not only the video needs to be compressed very efficiently but also the compression scheme needs to provide some error resilient features to deal with the high packet loss probability. In this thesis, we have worked with the H.264/ Advanced Video Coding (AVC) video compression standard since this is the most recent and most efficient video compression scheme. Also H.264 provides novel error resilient features e.g. slicing of the frame, Flexible Macroblock Ordering (FMO), data partitioning etc. In this thesis, we investigate how to utilize the error resilient schemes of H.264 to ensure a good quality picture at the receiving end. In the first part of the thesis, we find the optimum slice size that will enhance the quality of video transmission in a 3G environment. In the second part, we jointly optimize the data partitioning property and partial reliability extension property of the new transport layer protocol, Stream Control Transmission Protocol (SCTP). In the third and last part, we focus more on the network layer issues. We obtain the optimum point of application layer Forward Error Correction (FEC) and Medium Access Control (MAC) layer retransmission in a capacity constrained network. We assume that the bit rate assigned for the video application is more than the video bit rate so that the extra capacity available can be used for error correction.
4

Efficient transmission of error resilient H.264 video over wireless links

Connie, Ashfiqua Tahseen 11 1900 (has links)
With the advent of telecommunication technology, the need to transport multimedia content is increasing day by day. Successful video transmission over the wireless network faces a lot of challenges because of the limited resource and error prone nature of the wireless environment. To deal with these two challenges, not only the video needs to be compressed very efficiently but also the compression scheme needs to provide some error resilient features to deal with the high packet loss probability. In this thesis, we have worked with the H.264/ Advanced Video Coding (AVC) video compression standard since this is the most recent and most efficient video compression scheme. Also H.264 provides novel error resilient features e.g. slicing of the frame, Flexible Macroblock Ordering (FMO), data partitioning etc. In this thesis, we investigate how to utilize the error resilient schemes of H.264 to ensure a good quality picture at the receiving end. In the first part of the thesis, we find the optimum slice size that will enhance the quality of video transmission in a 3G environment. In the second part, we jointly optimize the data partitioning property and partial reliability extension property of the new transport layer protocol, Stream Control Transmission Protocol (SCTP). In the third and last part, we focus more on the network layer issues. We obtain the optimum point of application layer Forward Error Correction (FEC) and Medium Access Control (MAC) layer retransmission in a capacity constrained network. We assume that the bit rate assigned for the video application is more than the video bit rate so that the extra capacity available can be used for error correction.
5

Efficient transmission of error resilient H.264 video over wireless links

Connie, Ashfiqua Tahseen 11 1900 (has links)
With the advent of telecommunication technology, the need to transport multimedia content is increasing day by day. Successful video transmission over the wireless network faces a lot of challenges because of the limited resource and error prone nature of the wireless environment. To deal with these two challenges, not only the video needs to be compressed very efficiently but also the compression scheme needs to provide some error resilient features to deal with the high packet loss probability. In this thesis, we have worked with the H.264/ Advanced Video Coding (AVC) video compression standard since this is the most recent and most efficient video compression scheme. Also H.264 provides novel error resilient features e.g. slicing of the frame, Flexible Macroblock Ordering (FMO), data partitioning etc. In this thesis, we investigate how to utilize the error resilient schemes of H.264 to ensure a good quality picture at the receiving end. In the first part of the thesis, we find the optimum slice size that will enhance the quality of video transmission in a 3G environment. In the second part, we jointly optimize the data partitioning property and partial reliability extension property of the new transport layer protocol, Stream Control Transmission Protocol (SCTP). In the third and last part, we focus more on the network layer issues. We obtain the optimum point of application layer Forward Error Correction (FEC) and Medium Access Control (MAC) layer retransmission in a capacity constrained network. We assume that the bit rate assigned for the video application is more than the video bit rate so that the extra capacity available can be used for error correction. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
6

Research and developments of Dirac video codec

Tun, Myo January 2008 (has links)
In digital video compression, apart from storage, successful transmission of the compressed video data over the bandwidth limited erroneous channels is another important issue. To enable a video codec for broadcasting application, it is required to implement the corresponding coding tools (e.g. error-resilient coding, rate control etc.). They are normally non-normative parts of a video codec and hence their specifications are not defined in the standard. In Dirac as well, the original codec is optimized for storage purpose only and so, several non-normative part of the encoding tools are still required in order to be able to use in other types of application. Being the "Research and Developments of the Dirac Video Codec" as the research title, phase I of the project is mainly focused on the error-resilient transmission over a noisy channel. The error-resilient coding method used here is a simple and low complex coding scheme which provides the error-resilient transmission of the compressed video bitstream of Dirac video encoder over the packet erasure wired network. The scheme combines source and channel coding approach where error-resilient source coding is achieved by data partitioning in the wavelet transformed domain and channel coding is achieved through the application of either Rate-Compatible Punctured Convolutional (RCPC) Code or Turbo Code (TC) using un-equal error protection between header plus MV and data. The scheme is designed mainly for the packet-erasure channel, i.e. targeted for the Internet broadcasting application. But, for a bandwidth limited channel, it is still required to limit the amount of bits generated from the encoder depending on the available bandwidth in addition to the error-resilient coding. So, in the 2nd phase of the project, a rate control algorithm is presented. The algorithm is based upon the Quality Factor (QF) optimization method where QF of the encoded video is adaptively changing in order to achieve average bitrate which is constant over each Group of Picture (GOP). A relation between the bitrate, R and the QF, which is called Rate-QF (R-QF) model is derived in order to estimate the optimum QF of the current encoding frame for a given target bitrate, R. In some applications like video conferencing, real-time encoding and decoding with minimum delay is crucial, but, the ability to do real-time encoding/decoding is largely determined by the complexity of the encoder/decoder. As we all know that motion estimation process inside the encoder is the most time consuming stage. So, reducing the complexity of the motion estimation stage will certainly give one step closer to the real-time application. So, as a partial contribution toward realtime application, in the final phase of the research, a fast Motion Estimation (ME) strategy is designed and implemented. It is the combination of modified adaptive search plus semi-hierarchical way of motion estimation. The same strategy was implemented in both Dirac and H.264 in order to investigate its performance on different codecs. Together with this fast ME strategy, a method which is called partial cost function calculation in order to further reduce down the computational load of the cost function calculation was presented. The calculation is based upon the pre-defined set of patterns which were chosen in such a way that they have as much maximum coverage as possible over the whole block. In summary, this research work has contributed to the error-resilient transmission of compressed bitstreams of Dirac video encoder over a bandwidth limited error prone channel. In addition to this, the final phase of the research has partially contributed toward the real-time application of the Dirac video codec by implementing a fast motion estimation strategy together with partial cost function calculation idea.
7

Error Resilient Coding Using Flexible Macroblock Ordering In Wired And Wireless Communications

Demirtas, Ali Murat 01 September 2008 (has links) (PDF)
Error Resilient Coding tools are the methods to avoid or reduce the amount of corruption in video by altering the encoding algorithm. One of them is Flexible Macroblock Ordering (FMO) which provides us with ordering macroblocks of the frames flexibly. Six of them have definite ordering pattern and the last one, called explicit type, can get any order. In this thesis two explicit type algorithms, one of which is new, are explained and the performance of different FMO types in wired and wireless communication are evaluated. The first algorithm separates the important blocks into separate packets, so it equalizes the importance of packets. The proposed method allocates the important macroblocks according to a checkerboard pattern and employs unequal error protection to protect them more. The simulations are performed for wired and wireless communication and Forward Error Correction is used in the second stage of the simulations. Lastly the results of the new algorithms are compared with the performance of the other FMO types. According to the simulations the Proposed algorithm performs better than others when the error rate is very high and FEC is employed.
8

Robust Transmission Of 3d Models

Bici, Mehmet Oguz 01 November 2010 (has links) (PDF)
In this thesis, robust transmission of 3D models represented by static or time consistent animated meshes is studied from the aspects of scalable coding, multiple description coding (MDC) and error resilient coding. First, three methods for MDC of static meshes are proposed which are based on multiple description scalar quantization, partitioning wavelet trees and optimal protection of scalable bitstream by forward error correction (FEC) respectively. For each method, optimizations and tools to decrease complexity are presented. The FEC based MDC method is also extended as a method for packet loss resilient transmission followed by in-depth analysis of performance comparison with state of the art techniques, which pointed significant improvement. Next, three methods for MDC of animated meshes are proposed which are based on layer duplication and partitioning of the set of vertices of a scalable coded animated mesh by spatial or temporal subsampling where each set is encoded separately to generate independently decodable bitstreams. The proposed MDC methods can achieve varying redundancy allocations by including a number of encoded spatial or temporal layers from the other description. The algorithms are evaluated with redundancy-rate-distortion curves and per-frame reconstruction analysis. Then for layered predictive compression of animated meshes, three novel prediction structures are proposed and integrated into a state of the art layered predictive coder. The proposed structures are based on weighted spatial/temporal prediction and angular relations of triangles between current and previous frames. The experimental results show that compared to state of the art scalable predictive coder, up to 30% bitrate reductions can be achieved with the combination of proposed prediction schemes depending on the content and quantization level. Finally, optimal quality scalability support is proposed for the state of the art scalable predictive animated mesh coding structure, which only supports resolution scalability. Two methods based on arranging the bitplane order with respect to encoding or decoding order are proposed together with a novel trellis based optimization framework. Possible simplifications are provided to achieve tradeoff between compression performance and complexity. Experimental results show that the optimization framework achieves quality scalability with significantly better compression performance than state of the art without optimization.
9

Error resilience for video coding services over packet-based networks

Zhang, Jian, Electrical Engineering, Australian Defence Force Academy, UNSW January 1999 (has links)
Error resilience is an important issue when coded video data is transmitted over wired and wireless networks. Errors can be introduced by network congestion, mis-routing and channel noise. These transmission errors can result in bit errors being introduced into the transmitted data or packets of data being completely lost. Consequently, the quality of the decoded video is degraded significantly. This thesis describes new techniques for minimising this degradation. To verify video error resilience tools, it is first necessary to consider the methods used to carry out experimental measurements. For most audio-visual services, streams of both audio and video data need to be simultaneously transmitted on a single channel. The inclusion of the impact of multiplexing schemes, such as MPEG 2 Systems, in error resilience studies is also an important consideration. It is shown that error resilience measurements including the effect of the Systems Layer differ significantly from those based only on the Video Layer. Two major issues of error resilience are investigated within this thesis. They are resynchronisation after error detection and error concealment. Results for resynchronisation using small slices, adaptive slice sizes and macroblock resynchronisation schemes are provided. These measurements show that the macroblock resynchronisation scheme achieves the best performance although it is not included in MPEG2 standard. The performance of the adaptive slice size scheme, however, is similar to that of the macroblock resynchronisation scheme. This approach is compatible with the MPEG 2 standard. The most important contribution of this thesis is a new concealment technique, namely, Decoder Motion Vector Estimation (DMVE). The decoded video quality can be improved significantly with this technique. Basically, this technique utilises the temporal redundancy between the current and the previous frames, and the correlation between lost macroblocks and their surrounding pixels. Therefore, motion estimation can be applied again to search in the previous picture for a match to those lost macroblocks. The process is similar to that the encoder performs, but it is in the decoder. The integration of techniques such as DMVE with small slices, or adaptive slice sizes or macroblock resynchronisation is also evaluated. This provides an overview of the performance produced by individual techniques compared to the combined techniques. Results show that high performance can be achieved by integrating DMVE with an effective resynchronisation scheme, even at a high cell loss rates. The results of this thesis demonstrate clearly that the MPEG 2 standard is capable of providing a high level of error resilience, even in the presence of high loss. The key to this performance is appropriate tuning of encoders and effective concealment in decoders.
10

Enhancing H.26x coding for visual communications - with applications in telemedicine and television

Khire, Sourabh Mohan 14 March 2013 (has links)
In a wireless and mobile communication paradigm, distribution and sharing of video content often occurs over unfriendly network environments constrained by lack of sufficient bandwidth, and prone to jitter, delay and packet losses. The research presented in this thesis proposed an assortment of application-specific optimizations designed to enable high-quality video communication over bandwidth constrained and unreliable channels. This assortment of solutions, termed herein as the Application Specific Video Coding and Delivery (ASVCD) toolkit, comprises of content and network adaptive approaches such as Region of Interest (ROI) video coding, Multiple Representation Coding (MRC), and Multiple Representation Coding of the Region of Interest (ROI + MRC). Thus, the effectiveness of ROI based video-coding in facilitating diagnostically lossless delivery of surgical videos over very low bandwidth channels was studied in this thesis. Furthermore, to facilitate error resilient video delivery over channels prone to burst losses and signal loss intervals, the MRC scheme was presented in this thesis. Finally, the thesis proposed a scheme for unequal protection of the ROI in the video by using the MRC scheme to effectively enable a distance learning application. To summarize, the ASVCD toolkit contributed in enabling high-quality video communications applications to become seamless and pervasive.

Page generated in 0.0763 seconds