• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convexités et problèmes de transport optimal sur l'espace de Wiener

Nolot, Vincent 27 June 2013 (has links) (PDF)
L'objet de cette thèse est d'étudier la théorie du transport optimal sur un espace de Wiener abstrait. Les résultats qui se trouvent dans quatre principales parties, portent :Sur la convexité de l'entropie relative. On prolongera des résultats connus en dimension finie, sur l'espace de Wiener muni d'une norme uniforme, à savoir que l'entropie relative est (au moins faiblement) 1-convexe le long des géodésiques induites par un transport optimal sur l'espace de Wiener.Sur les mesures à densité logarithmiquement concaves. Le premier des résultats importants consiste à montrer qu'une inégalité de type Harnack est vraie pour le semi-groupe induit par une telle mesure sur l'espace de Wiener. Le second des résultats obtenus nous fournit une inégalité en dimension finie (mais indépendante de la dimension), contrôlant la différence de deux applications de transport optimal.Sur le problème de Monge. On s'intéressera au problème de Monge sur l'espace de Wiener, muni de plusieurs normes : des normes à valeurs finies, ou encore la pseudo-norme de Cameron-Martin.Sur l'équation de Monge-Ampère. Grâce aux inégalités obtenues précédemment, nous serons en mesure de construire des solutions fortes de l'équation de Monge-Ampère (induite par le coût quadratique) sur l'espace de Wiener, sous de faibles hypothèses sur les densités des mesures considérées
2

Une étude de la régularité de solutions d'EDS Rétrogrades et de leurs utilisations en finance / Regularity of solutions to Backward SDEs and applications to finance

Mastrolia, Thibaut 14 December 2015 (has links)
Dans cette thèse, nous donnerons tout d'abord des conditions sur les paramètres d’une EDSR à générateur lipschitzien ou à croissance quadratique telles que les processus solutions de l’EDSR admettent des densités par rapport à la mesure de Lebesgue. Puis, nous donnerons des conditions sur les paramètres d’une EDSR non-markovienne à générateur lipschitzien ou quadratique telles que les processus solutions de l’EDSR admettent une dérivée de Malliavin, à l’aide d’une nouvelle caractérisation de cette dérivée. Ce résultat nous fournira une nouvelle structure interne des espaces de Malliavin que nous étudierons. Nous donnerons ensuite des conditions nous assurant que des solutions d’EDSR non-markoviennes à générateurs lipschitziens stochastiques sont différentiables au sens de Malliavin en utilisant cette caractérisation. Nous ferons ensuite une analyse de densités pour les lois des solutions de telles EDSR et nous appliquerons nos résultats à la biologie. Enfin, nous étudierons deux exemples d’utilisations des EDSR en finance. On s’intéressera tout d’abord à un problème de maximisation d’utilité avec un horizon aléatoire que nous réduirons à l’analyse d’un nouveau type d’EDSR à coefficients singuliers et nous illustrerons nos résultats par des simulations numériques. Puis, nous résoudrons un problème de type Principal/Agent sous volatilité incertaine. / In the first part of this PhD thesis, we give conditions on the parameters of Lipschitz and quadratic growth BSDEs such that the laws of the components Y and Z of the solutions to such BSDEs admit densities with respect to the Lebesgue measure. We then provide conditions on the parameters of non-Markovian Lipschitz or quadratic growth BSDEs such that the components Y and Z of their solutions are Malliavin differentiable. We obtain these conditions by applying a new characterization of the Malliavin differentiability, as an Lp convergence criterion of difference quotients. This result provide also a new characterization of the Malliavin-Sobolev spaces that we study in detail. To finish this first theoretical part, we provide conditions ensuring that solutions of non-Markovian stochastic-Lipschitz BSDEs are Malliavin differentiable by applying the characterization of the Malliavin differentiability obtained. We then analyse the existence of densities for the laws of the components of solutions to such BSDEs and we apply our result to a model of gene expression. In the second part of this thesis, we investigate financial problems dealing with BSDEs. We first solve a utility maximization problem with a random horizon, characterized by an exogenous default time. We reduce it to the analysis of a specific BSDE, which we call BSDE with singular coefficients, when the default time is assumed to be bounded. We give conditions ensuring the existence and the uniqueness of solutions to such BSDE and we illustrate our results by numerical simulations. Then, we solve a Principal/Agent problem with ambiguity, in which the "Nature" impacts both the utilities of the Agent and the Principal, charaterized by sets of probability measures which modify the volatility.
3

Convexités et problèmes de transport optimal sur l'espace de Wiener / Convexities and optimal transport problems on the Wiener space

Nolot, Vincent 27 June 2013 (has links)
L'objet de cette thèse est d'étudier la théorie du transport optimal sur un espace de Wiener abstrait. Les résultats qui se trouvent dans quatre principales parties, portent :Sur la convexité de l'entropie relative. On prolongera des résultats connus en dimension finie, sur l'espace de Wiener muni d'une norme uniforme, à savoir que l'entropie relative est (au moins faiblement) 1-convexe le long des géodésiques induites par un transport optimal sur l'espace de Wiener.Sur les mesures à densité logarithmiquement concaves. Le premier des résultats importants consiste à montrer qu'une inégalité de type Harnack est vraie pour le semi-groupe induit par une telle mesure sur l'espace de Wiener. Le second des résultats obtenus nous fournit une inégalité en dimension finie (mais indépendante de la dimension), contrôlant la différence de deux applications de transport optimal.Sur le problème de Monge. On s'intéressera au problème de Monge sur l'espace de Wiener, muni de plusieurs normes : des normes à valeurs finies, ou encore la pseudo-norme de Cameron-Martin.Sur l'équation de Monge-Ampère. Grâce aux inégalités obtenues précédemment, nous serons en mesure de construire des solutions fortes de l'équation de Monge-Ampère (induite par le coût quadratique) sur l'espace de Wiener, sous de faibles hypothèses sur les densités des mesures considérées / The aim of this PhD is to study the optimal transportation theory in some abstract Wiener space. You can find the results in four main parts and they are aboutThe convexity of the relative entropy. We will extend the well known results in finite dimension to the Wiener space, endowed with the uniform norm. To be precise the relative entropy is (at least weakly) geodesically 1-convex in the sense of the optimal transportation in the Wiener space.The measures with logarithmic concave density. The first important result consists in showing that the Harnack inequality holds for the semi-group induced by such a measure in the Wiener space. The second one provides us a finite dimensional and dimension-free inequality which gives estimate on the difference between two optimal maps.The Monge Problem. We will be interested in the Monge Problem on the Wiener endowed with different norms: either some finite valued norms or the pseudo-norm of Cameron-Martin.The Monge-Ampère equation. Thanks to the inequalities obtained above, we will be able to build strong solutions of the Monge-Ampère (those which are induced by the quadratic cost) equation on the Wiener space, provided the considered measures satisfy weak conditions

Page generated in 0.0396 seconds