Spelling suggestions: "subject:"estimateur"" "subject:"estimateurs""
1 |
Estimateurs de calage pour les quantilesHarms, Torsten January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Analyse de la convergence de l'algorithme FastICA : échantillon de taille finie et infinie / Convergence analysis of the FastICA algorithm : finite and infinite sample sizeWei, Tianwen 10 June 2013 (has links)
L'algorithme FastICA est l'un des algorithmes les plus populaires dans le domaine de l'analyse en composantes indépendantes (ICA). Il existe deux versions de FastICA: Celle qui correspond au cas où l'échantillon est de taille infinie, et celle qui traite de la situation concrète, où seul un échantillon de taille finie est disponible. Dans cette thèse, nous avons fait une étude détaillée des vitesses de convergence de l'algorithme FastICA dans le cas où la taille de l'échantillon est finie ou infinie, et nous avons établi cinq critères pour le choix des fonctions de non-linéarité. Dans les trois premiers chapitres, nous avons introduit le problème de l'ICA et revisité les résultats existants. Dans le Chapitre 4, nous avons étudié la convergence du FastICA empirique et le lien entre la limite de FastICA empirique et les points critiques de la fonction de contraste empirique. Dans le Chapitre 5, nous avons utilisé la technique du M-estimateur pour obtenir la normalité asymptotique et la matrice de covariance asymptotique de l'estimateur FastICA. Ceci nous a permis aussi de déduire quatre critères pour choisir les fonctions de non-linéarité. Un cinquième critère de choix de non-linéarité a été étudié dans le chapitre 6. Ce critère est basé sur une étude fine de la vitesse de convergence de FastICA empirique. Nous avons illustré chaque chapitre par des résultats numériques qui valident nos résultats théoriques. / The FastICA algorithm is one of the most popular algorithms in the domain of Independent Component Analysis (ICA). There exist two versions of FastICA: the one that corresponds to the ideal case that the sample size is infinite, and the one that deal with the practical situation, where a sample of finite size is available. In this thesis, we made a detailed study of the rate of convergence of the FastICA algorithm of both versions, and we established five criteria for the choice of the non-linearity function. In the first three chapters, we introduced the problem of ICA and revisited the classical results. In Chapitre 4, we studied the convergence of empirical FastICA and the link between the limit of empirical FastICA and the critical points of the empirical contrast function. In Chapter 5, we used the technique of M-estimator to obtain the asymptotic normality and the asymptotic covariance matrix of the FastICA estimator. This allowed us to derive four criteria to choose the non-linearity function. A fifth criterion for the choice of the non-linearity function was studied in Chapter 6. This criterion is based on the rate of convergence of the empirical FastICA algorithm. At the end of each chapter, we provided numerical simulations that validate our theoretical results.
|
3 |
Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire / Adaptive estimation for inverse problem with application to cell divisionHoang, Van Hà 28 November 2016 (has links)
Cette thèse se divise en deux parties indépendantes. Dans la première, nous considérons un modèle stochastique individu-centré en temps continu décrivant une population structurée par la taille. La population est représentée par une mesure ponctuelle évoluant suivant un processus aléatoire déterministe par morceaux. Nous étudions ici l'estimation non-paramétrique du noyau régissant les divisions, sous deux schémas d'observation différents. Premièrement, dans le cas où nous obtenons l'arbre entier des divisions, nous construisons un estimateur à noyau avec une sélection adaptative de fenêtre dépendante des données. Nous obtenons une inégalité oracle et des vitesses de convergence exponentielles optimales. Deuxièmement, dans le cas où l'arbre de division n'est pas complètement observé, nous montrons que le processus microscopique renormalisé décrivant l'évolution de la population converge vers la solution faible d'une équation aux dérivés partielles. Nous proposons un estimateur du noyau de division en utilisant des techniques de Fourier. Nous montrons la consistance de l'estimateur. Dans la seconde partie, nous considérons le modèle de régression non-paramétrique avec erreurs sur les variables dans le contexte multidimensionnel. Notre objectif est d'estimer la fonction de régression multivariée inconnue. Nous proposons un estimateur adaptatif basé sur des noyaux de projection fondés sur une base d'ondelettes multi-index et sur un opérateur de déconvolution. Le niveau de résolution des ondelettes est obtenu par la méthode de Goldenshluger-Lepski. Nous obtenons une inégalité oracle et des vitesses de convergence optimales sur les espaces de Hölder anisotropes. / This thesis is divided into two independent parts. In the first one, we consider a stochastic individual-based model in continuous time to describe a size-structured population for cell divisions. The random point measure describing the cell population evolves as a piecewise deterministic Markov process. We address here the problem of nonparametric estimation of the kernel ruling the divisions, under two observation schemes. First, we observe the evolution of cells up to a fixed time T and we obtain the whole division tree. We construct an adaptive kernel estimator of the division kernel with a fully data-driven bandwidth selection. We obtain an oracle inequality and optimal exponential rates of convergence. Second, when the whole division tree is not completely observed, we show that, in a large population limit, the renormalized microscopic process describing the evolution of cells converges to the weak solution of a partial differential equation. We propose an estimator of the division kernel by using Fourier techniques. We prove the consistency of the estimator. In the second part, we consider the nonparametric regression with errors-in-variables model in the multidimensional setting. We estimate the multivariate regression function by an adaptive estimator based on projection kernels defined with multi-indexed wavelets and a deconvolution operator. The wavelet level resolution is selected by the method of Goldenshluger-Lepski. We obtain an oracle inequality and optimal rates of convergence over anisotropic Hölder classes.
|
4 |
Le poids de l'histoire : rôle des facteurs économiques, politiques et institutionnels dans l'accumulation de dette publiqueSt-Cerny-Gosselin, Julie January 2016 (has links)
Ce mémoire s’intéresse à l’endettement des gouvernements et aux facteurs historiques qui en sont les causes. L’analyse utilise des données historiques des cinquante États américains afin d’explorer l’influence de différents facteurs d’ordre économique, politique et institutionnel sur l’accumulation de la dette publique. Alors que la littérature met de l’avant l’impact des facteurs économiques, politiques et institutionnels dans la détermination de l’endettement public, la contrainte budgétaire du gouvernement fait ressortir la relation entre le stock de dette publique courant et les déficits passés. Cette relation est au cœur de la question de recherche abordée par le mémoire : quel est le rôle des facteurs économiques, politiques et institutionnels historiques dans l’accumulation de dette publique? Comment estimer leur poids respectif? Afin de répondre à ces questions, l’analyse empirique intègre des variables explicatives économiques, politiques et institutionnelles ayant une composante historique. De plus, elle accorde une attention particulière aux facteurs institutionnels en utilisant différentes sources de données et des caractérisations plus ou moins détaillées pour modéliser les règles budgétaires et les limites d’endettement. Par ailleurs, la méthodologie empirique tient compte de la question de l’endogénéité potentielle des institutions fiscales. Les résultats de l’analyse économétrique confirment l’importance des facteurs économiques. Dans le cas des variables politiques, ils infirment la théorie selon laquelle les gouvernements divisés s’endettent davantage, mais confirment que l’appartenance politique des gouverneurs a un effet certain sur le poids de la dette publique. Ils indiquent également que l’indice historique d’alternance des partis politiques est important, l’alternance plus fréquente étant associée à une légère diminution de l’endettement. L’instabilité politique n’alimenterait donc pas nécessairement l’endettement public, ce qui suggère qu’il est possible qu’une plus forte compétition électorale puisse avoir un effet positif sur la rigueur budgétaire dans un système à deux partis politiques. De façon générale, les effets estimés des variables institutionnelles impliquent qu’elles ne sont que peu efficaces à limiter l’endettement des États.
|
5 |
Méthodes de prévision en régression linéaire multivariéeGueorguieva, Ana January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
6 |
Étude du compromis précision statistique-temps de calcul / Study of the trade-off between statistic accuracy and computation timeBrunin, Maxime 16 January 2018 (has links)
Dans le contexte actuel, il est nécessaire de concevoir des algorithmes capables de traiter des données volumineuses en un minimum de temps de calcul. Par exemple, la programmation dynamique appliquée au problème de détection de ruptures ne permet pas de traiter rapidement des données ayant une taille d'échantillon supérieure à $10^{6}$. Les algorithmes itératifs fournissent une famille ordonnée d'estimateurs indexée par le nombre d'itérations. Dans cette thèse, nous avons étudié statistiquement cette famille d'estimateurs afin de sélectionner un estimateur ayant de bonnes performances statistiques et peu coûteux en temps de calcul. Pour cela, nous avons suivi l'approche utilisant les règles d'arrêt pour proposer un tel estimateur dans le cadre du problème de détection de ruptures dans la distribution et le problème de régression linéaire. Il est d'usage de faire un grand nombre d'itérations pour calculer un estimateur usuel. Une règle d'arrêt est l'itération à laquelle nous stoppons l'algorithme afin de limiter le phénomène de surapprentissage dont souffre ces estimateurs usuels. En stoppant l'algorithme plus tôt, les règles d'arrêt permettent aussi d'économiser du temps de calcul. Lorsque le budget de temps est limité, il se peut que nous n'ayons pas le temps d'itérer jusqu'à la règle d'arrêt. Dans ce contexte, nous avons étudié le choix optimal du nombre d'itérations et de la taille d'échantillon pour atteindre une précision statistique optimale. Des simulations ont mis en évidence un compromis entre le nombre d'itérations et la taille d'échantillon pour atteindre une précision statistique optimale à budget de temps limité. / In the current context, we need to develop algorithms which are able to treat voluminous data with a short computation time. For instance, the dynamic programming applied to the change-point detection problem in the distribution can not treat quickly data with a sample size greater than $10^{6}$. The iterative algorithms provide an ordered family of estimators indexed by the number of iterations. In this thesis, we have studied statistically this family of estimators in oder to select one of them with good statistics performance and a low computation cost. To this end, we have followed the approach using the stopping rules to suggest an estimator within the framework of the change-point detection problem in the distribution and the linear regression problem. We use to do a lot of iterations to compute an usual estimator. A stopping rule is the iteration to which we stop the algorithm in oder to limit overfitting whose some usual estimators suffer from. By stopping the algorithm earlier, the stopping rules enable also to save computation time. Under time constraint, we may have no time to iterate until the stopping rule. In this context, we have studied the optimal choice of the number of iterations and the sample size to reach an optimal accuracy. Simulations highlight the trade-off between the number of iterations and the sample size in order to reach an optimal accuracy under time constraint.
|
7 |
Grandes déviations pour les estimateurs à noyau de la densité et étude de l'estimateur de décrément aléatoireLei, Liangzhen 09 December 2005 (has links) (PDF)
Cette thèse est consacrée à l'étude de deux thèmes : les grandes déviations pour les estimateurs à noyau de la densité $f_n^*$ des processus stochastiques stationnaires et l'estimateur de décrément aléatoire (EDA) pour les processus gaussiens stationnaires.<br /><br /><br />Le premier thème est la partie principale de cette thèse, constituées des quatre premiers chapitres. Dans le chapitre 1, on établit le w*-PGD(principe de grandes déviations) de $f_n^*$ et une inégalité de concentration dans le cas i.i.d.. On démontre dans le chapitre 2 la convergence exponentielle de $f_n^*$ dans $L^1(R^d)$ et une inégalité de concentration pour des suites $\phi$-mélangeants, en se basant sur une inégalité de tranport de Rio. Les chapitre 3 et 4 constituent le coeur de cette thèse : on établit (i) le PGD de $f_n^*$ pour la topologie faible $\sigma(L^1, L^{\infty})$ ; (ii) le w*-PGD de $f_n^*$ dans $L^1$ pour la topologie forte $\vert\cdot\vert_1$ ; (iii) l'estimation de grandes déviations pour l'erreur $D_n^*=\vert f_n^*(x)-f(x) \vert_1$ et (iv) l'optimalité asymptotique de $f_n^*$ au sens de Bahadur. Ces résultats sont prouvés dans le chapitre 3 pour des processus de Markov uniformément ergodiques et dans le chapitre 4 pour des processus de Markov réversibles uniformément intégrables.<br /><br /><br />Le dernier chapitre est consacré au second thème. On démontre la loi des grands nombres et le théorème de limite centrale pour l'EDA à temps discret et on établit pour la première fois l'expression explicite du biais de l'EDA à temps continu.
|
8 |
Contribution à l’économétrie spatiale et l’analyse de données fonctionnelles / Contribution to spatial econometric and functional data analysisGharbi, Zied 24 June 2019 (has links)
Ce mémoire de thèse touche deux champs de recherche importants en statistique inférentielle, notamment l’économétrie spatiale et l’analyse de données fonctionnelles. Plus précisément, nous nous sommes intéressés à l’analyse de données réelles spatiales ou spatio-fonctionnelles en étendant certaines méthodes inférentielles pour prendre en compte une éventuelle dépendance spatiale. Nous avons d’abord considéré l’estimation d’un modèle autorégressif spatiale (SAR) ayant une variable dépendante fonctionnelle et une variable réponse réelle à l’aide d’observations sur une unité géographique donnée. Il s’agit d’un modèle de régression avec la spécificité que chaque observation de la variable indépendante collectée dans un emplacement géographique dépend d’observations de la même variable dans des emplacements voisins. Cette relation entre voisins est généralement mesurée par une matrice carrée nommée matrice de pondération spatiale et qui mesure l’effet d’interaction entre les unités spatiales voisines. Cette matrice est supposée exogène c’est-à-dire la métrique utilisée pour la construire ne dépend pas des mesures de variables explicatives du modèle. L’apport de cette thèse sur ce modèle réside dans le fait que la variable explicative est de nature fonctionnelle, à valeurs dans un espace de dimension infinie. Notre méthodologie d’estimation est basée sur une réduction de la dimension de la variable explicative fonctionnelle, par l’analyse en composantes principales fonctionnelles suivie d’une maximisation de la vraisemblance tronquée du modèle. Des propriétés asymptotiques des estimateurs, des illustrations des performances des estimateurs via une étude de Monte Carlo et une application à des données réelles environnementales ont été considérées. Dans la deuxième contribution, nous reprenons le modèle SAR fonctionnel étudié dans la première partie en considérant une structure endogène de la matrice de pondération spatiale. Au lieu de se baser sur un critère géographique pour calculer les dépendances entre localisations voisines, nous calculons ces dernières via un processus endogène, c’est-à-dire qui dépend des variables à expliquées. Nous appliquons la même approche d’estimation à deux étapes décrite ci-dessus, nous étudions aussi les performances de l’estimateur proposé pour des échantillons à taille finie et discutons le cadre asymptotique. Dans la troisième partie de cette contribution, nous nous intéressons à l’hétéroscédasticité dans les modèles partiellement linéaires pour variables exogènes réelles et variable réponse binaire. Nous proposons un modèle Probit spatial contenant une partie non-paramétrique. La dépendance spatiale est introduite au niveau des erreurs (perturbations) du modèle considéré. L’estimation des parties paramétrique et non paramétrique du modèle est récursive et consiste à fixer d’abord les composants paramétriques et à estimer la partie non paramétrique à l’aide de la méthode de vraisemblance pondérée puis utiliser cette dernière estimation pour construire un profil de la vraisemblance pour estimer la partie paramétrique. La performance de la méthode proposée est étudiée via une étude Monte Carlo. La contribution finit par une étude empirique sur la relation entre la croissance économique et la qualité environnementale en Suède à l’aide d’outils de l’économétrie spatiale. / This thesis covers two important fields of research in inferential statistics, namely spatial econometrics and functional data analysis. More precisely, we have focused on the analysis of real spatial or spatio-functional data by extending certain inferential methods to take into account a possible spatial dependence. We first considered the estimation of a spatial autoregressive model (SAR) with a functional dependent variable and a real response variable using observations on a given geographical unit. This is a regression model with the specificity that each observation of the independent variable collected in a geographical location depends on observations of the same variable in neighboring locations. This relationship between neighbors is generally measured by a square matrix called the spatial weighting matrix, which measures the interaction effect between neighboring spatial units. This matrix is assumed to be exogenous, i.e. the metric used to construct it does not depend on the explanatory variable. The contribution of this thesis to this model lies in the fact that the explanatory variable is of a functional nature, with values in a space of infinite dimension. Our estimation methodology is based on a dimension reduction of the functional explanatory variable through functional principal component analysis followed by maximization of the truncated likelihood of the model. Asymptotic properties of the estimators, illustrations of the performance of the estimators via a Monte Carlo study and an application to real environmental data were considered. In the second contribution, we use the functional SAR model studied in the first part by considering an endogenous structure of the spatial weighting matrix. Instead of using a geographical criterion to calculate the dependencies between neighboring locations, we calculate them via an endogenous process, i.e. one that depends on explanatory variables. We apply the same two-step estimation approach described above and study the performance of the proposed estimator for finite or infinite-tending samples. In the third part of this thesis we focus on heteroskedasticity in partially linear models for real exogenous variables and binary response variable. We propose a spatial Probit model containing a non-parametric part. Spatial dependence is introduced at the level of errors (perturbations) of the model considered. The estimation of the parametric and non-parametric parts of the model is recursive and consists of first setting the parametric parameters and estimating the non-parametric part using the weighted likelihood method and then using the latter estimate to construct a likelihood profile to estimate the parametric part. The performance of the proposed method is investigated via a Monte-Carlo study. An empirical study on the relationship between economic growth and environmental quality in Sweden using some spatial econometric tools finishes the document.
|
9 |
Point de vue maxiset en estimation non paramétriqueAutin, Florent 07 December 2004 (has links) (PDF)
Dans le cadre d'une analyse par ondelettes, nous étudions les propriétés statistiques de diverses classes de procédures. Plus précisément, nous cherchons à déterminer les espaces maximaux (maxisets) sur lesquels ces procédures atteignent une vitesse de convergence donnée. L'approche maxiset nous permet alors de donner une explication théorique à certains phénomènes observés en pratique et non expliqués par l'approche minimax. Nous montrons en effet que les estimateurs de seuillage aléatoire sont plus performants que ceux de seuillage déterministe. Ensuite, nous prouvons que les procédures de seuillage par groupes, comme certaines procédures d'arbre (proches de la procédure de Lepski) ou de seuillage par blocs, ont de meilleures performances au sens maxiset que les procédures de seuillage individuel. Par ailleurs, si les maxisets des estimateurs Bayésiens usuels construits sur des densités à queues lourdes sont de même nature que ceux des estimateurs de seuillage dur, nous montrons qu'il en est de même pour ceux des estimateurs Bayésiens construits à partir de densités Gaussiennes à grande variance et dont les performances numériques sont très bonnes.
|
10 |
Test d'ajustement d'un processus de diffusion ergodique à changement de régimeGassem, Anis 07 July 2010 (has links) (PDF)
Nous considérons les tests d'ajustement de type Cramér-von Mises pour tester l'hypothèse que le processus de diffusion observé est un "switching diffusion", c'est-à-dire un processus de diffusion à changement de régime dont la dérive est de type signe. Ces tests sont basés sur la fonction de répartition empirique et la densité empirique. Il est montré que les distributions limites des tests statistiques proposés sont définis par des fonctionnelles de type intégrale des processus Gaussiens continus. Nous établissons les développements de Karhunen-Loève des processus limites correspondants. Ces développements nous permettent de simplifier le problème du calcul des seuils. Nous étudions le comportement de ces statistiques sous les alternatives et nous montrons que ces tests sont consistants. Pour traiter les hypothèses de base composite nous avons besoin de connaître le comportement asymptotique des estimateurs statistiques des paramètres inconnus, c'est pourquoi nous considérons le problème de l'estimation des paramètres pour le processus de diffusion à changement de régime. Nous supposons que le paramètre inconnu est à deux dimensions et nous décrivons les propriétés asymptotiques de l'estimateur de maximum de vraisemblance et de l'estimateur bayésien dans ce cas. L'utilisation de ces estimateurs nous ramène à construire les tests de type Cramér-von Mises correspondants et à étudier leurs distributions limites. Enfin, nous considérons deux tests de type Cramér-von Mises de processus de diffusion ergodiques dans le cas général. Il est montré que pour le choix de certaines des fonctions de poids ces tests sont asymptotiquement " distribution-free ". Pour certains cas particuliers, nous établissons les expressions explicites des distributions limites de ces statistiques par le calcul direct de la transformée de Laplace.
|
Page generated in 0.0517 seconds