• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PCI Express-based Ethernet Switch

January 2012 (has links)
abstract: A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to be considered. An overview of the proposed Ethernet switch architecture is presented. The switch consists of a PCI Express switching fabric and multiple adaptor cards. The thesis reviews the peer-to-peer (P2P) communication protocol used in the switching fabric. The thesis also discusses the packet routing procedure in P2P protocol in detail. The Ethernet switch utilizes a portion of the Quality of Service provided with PCI Express to ensure guaranteed transmission. The thesis presents a method of adapting Ethernet packets over the PCI Express transaction layer packets. The adaptor card is divided into the following two parts: receive path and transmit path. The commercial off-the-shelf Media Access Control (MAC) core and PCI Express endpoint core are used in the adaptor. The output address lookup logic block is responsible for converting Ethernet MAC addresses to PCI Express port addresses. Different methods of providing Quality of Service in the adaptor card include classification, flow control, and error detection with the cooperation of the PCI Express switch are discussed. The adaptor logic is implemented in Verilog hardware description language. Functional simulation is conducted in ModelSim. The simulation results show that the Ethernet packets are able to be converted to the corresponding PCI Express transaction layer packets based on their destination MAC addresses. The transaction layer packets are then converted back to Ethernet packets. A functionally correct FPGA logic of the adaptor card is ready for implementation on real FPGA development board. / Dissertation/Thesis / M.S. Electrical Engineering 2012
2

Vysokorychlostní přepínač dat / High-speed data switch

Toman, Jakub January 2012 (has links)
The master’s thesis is focused on desing high-speed ethernet switch based on circuit FPGA. The switch is able to divide one data stream, created from ethernet frames to the two data streams with half data flow.
3

Projeto, verificação funcional e síntese de módulos funcionais para um comutador Gigabit Ethernet / Design, functional verification and synthesis of functional modules for a gigabit ethernet switch

Seclen, Jorge Lucio Tonfat January 2011 (has links)
Este trabalho apresenta o projeto, a verificação funcional e a síntese dos módulos funcionais de um comutador Gigabit Ethernet. As funções destes módulos encontramse definidas nos padrões IEEE 802.1D, IEEE 802.1Q, IEEE 802.3 e nos seguintes RFCs (Request for Comments): RFC 2697, RFC 2698 e RFC 4115. Estes módulos formam o núcleo funcional do comutador e implementam as principais funções dele. Neste trabalho quatro módulos são desenvolvidos e validados. Estes módulos foram projetados para serem inseridos na plataforma NetFPGA, formando o chamado “User Data Path”. Esta plataforma foi desenvolvida pela universidade de Stanford para permitir a prototipagem rápida de hardware para redes. O primeiro módulo chamado de “Árbitro de entrada” decide qual das portas de entrada do comutador ele vai atender, para que os quadros que ingressam por essa porta sejam processados. Este módulo utiliza um algoritmo Deficit Round Robin (DRR). Este algoritmo corrige um problema encontrado no módulo original desenvolvido na plataforma NetFPGA. O segundo módulo é o “Pesquisador da porta de saída”. O bloco principal deste módulo é o motor de classificação. A função principal do motor de classificação e aprendizagem de endereços MAC é encaminhar os quadros à suas respectivas portas de saída. Para cumprir esta tarefa, ele armazena o endereço MAC de origem dos quadros em uma memória SRAM e é associado a uma das portas de entrada. Este motor de classificação utiliza um mecanismo de hashing que foi provado que é eficaz em termos de desempenho e custo de implementação. São apresentadas duas propostas para implementar o motor de classificação. Os resultados da segunda proposta permite pesquisar efetivamente 62,5 milhões de quadros por segundo, que é suficiente para trabalhar a uma taxa wire-speed em um comutador Gigabit de 42 portas. O maior desafio foi conseguir a taxa de wire-speed durante o processo de “aprendizagem” usando uma memória SRAM externa. O terceiro módulo é o marcador de quadros. Este módulo faz parte do mecanismo de qualidade de serviço (QoS). Com este módulo é possível definir uma taxa máxima de transferência para cada uma das portas do comutador. O quarto módulo (Output Queues) implementa as filas de saída do comutador. Este módulo faz parte de plataforma NetFPGA, mas alguns erros foram encontrados e corrigidos durante o processo de verificação. Os blocos foram projetados utilizando Verilog HDL e visando as suas implementações em ASIC, baseado em uma tecnologia de 180 nanômetros da TSMC com a metodologia Semi-Custom baseada em standard cells. Para a verificação funcional foi utilizada a linguagem SystemVerilog. Uma abordagem de estímulos aleatórios restritos é utilizada em um ambiente de testbench com capacidade de verificação automática. Os resultados da verificação funcional indicam que foi atingido um alto porcentual de cobertura de código e funcional. Estes indicadores avaliam a qualidade e a confiabilidade da verificação funcional. Os resultados da implementação em ASIC amostram que os quatro módulos desenvolvidos atingem a freqüência de operação (125 MHz) definida para o funcionamento completo do comutador. Os resultados de área e potência mostram que o módulo das Filas de saída possui a maior área e consumo de potência. Este módulo representa o 92% da área (115 K portas lógicas equivalentes) e o 70% da potência (542 mW) do “User Data Path”. / This work presents the design, functional verification and synthesis of the functional modules of a Gigabit Ethernet switch. The functions of these modules are defined in the IEEE 802.1D, IEEE 802.1Q, IEEE 802.3 standards and the following RFCs (Request for Comments): RFC 2697, RFC 2698 and RFC 4115. These modules are part of the functional core of the switch and implement the principal functions of it. In this work four modules are developed and validated. These modules were designed to be inserted in the NetFPGA platform, as part of the “User Data Path”. This platform was developed at Stanford University to enable the fast prototype of networking hardware. The first module called “input arbiter” decides which input port to serve next. This module uses an algorithm Deficit Round Robin (DRR). This algorithm corrects a problem found in the original module developed in the NetFPGA platform. The second module is the classification engine. The main function of the MAC address classification engine is to forward Ethernet frames to their corresponding output ports. To accomplish this task, it stores the source MAC address from frames in a SRAM memory and associates it to one of the input ports. This classification engine uses a hashing scheme that has been proven to be effective in terms of performance and implementation cost. It can search effectively 62.5 million frames per second, which is enough to work at wire-speed rate in a 42-port Gigabit switch. The main challenge was to achieve wire-speed rate during the “learning” process using external SRAM memory. The third module is the frame marker. This module is part of the quality of service mechanism (QoS). With this module is possible to define a maximum transmission rate for each port of the switch. The fourth module (Output Queues) implements the output queues of the switch. This module is part of the NetFPGA platform, but some errors were found and corrected during the verification process. These module were designed using Verilog HDL, targeting the NetFPGA prototype board and an ASIC based on a 180 nm process from TSMC with the Semi-custom methodology based on standard cells. For the functional verification stage is used the SystemVerilog language. A constrained-random stimulus approach is used in a layered-testbench environment with self-checking capability. The results from the functional verification indicate that it was reached a high percentage of functional and code coverage. These indicators evaluate the quality and reliability of the functional verification. The results from the ASIC implementation show that the four modules developed achieve the operation frequency (125 MHz) defined for the overall switch operation. The area and power results demonstrate that the Output Queues module has the largest area and power consumption. This module represents the 92% of area (115 K equivalent logic gates) and the 70% of power (542 mW) from the User Data Path.
4

Projeto, verificação funcional e síntese de módulos funcionais para um comutador Gigabit Ethernet / Design, functional verification and synthesis of functional modules for a gigabit ethernet switch

Seclen, Jorge Lucio Tonfat January 2011 (has links)
Este trabalho apresenta o projeto, a verificação funcional e a síntese dos módulos funcionais de um comutador Gigabit Ethernet. As funções destes módulos encontramse definidas nos padrões IEEE 802.1D, IEEE 802.1Q, IEEE 802.3 e nos seguintes RFCs (Request for Comments): RFC 2697, RFC 2698 e RFC 4115. Estes módulos formam o núcleo funcional do comutador e implementam as principais funções dele. Neste trabalho quatro módulos são desenvolvidos e validados. Estes módulos foram projetados para serem inseridos na plataforma NetFPGA, formando o chamado “User Data Path”. Esta plataforma foi desenvolvida pela universidade de Stanford para permitir a prototipagem rápida de hardware para redes. O primeiro módulo chamado de “Árbitro de entrada” decide qual das portas de entrada do comutador ele vai atender, para que os quadros que ingressam por essa porta sejam processados. Este módulo utiliza um algoritmo Deficit Round Robin (DRR). Este algoritmo corrige um problema encontrado no módulo original desenvolvido na plataforma NetFPGA. O segundo módulo é o “Pesquisador da porta de saída”. O bloco principal deste módulo é o motor de classificação. A função principal do motor de classificação e aprendizagem de endereços MAC é encaminhar os quadros à suas respectivas portas de saída. Para cumprir esta tarefa, ele armazena o endereço MAC de origem dos quadros em uma memória SRAM e é associado a uma das portas de entrada. Este motor de classificação utiliza um mecanismo de hashing que foi provado que é eficaz em termos de desempenho e custo de implementação. São apresentadas duas propostas para implementar o motor de classificação. Os resultados da segunda proposta permite pesquisar efetivamente 62,5 milhões de quadros por segundo, que é suficiente para trabalhar a uma taxa wire-speed em um comutador Gigabit de 42 portas. O maior desafio foi conseguir a taxa de wire-speed durante o processo de “aprendizagem” usando uma memória SRAM externa. O terceiro módulo é o marcador de quadros. Este módulo faz parte do mecanismo de qualidade de serviço (QoS). Com este módulo é possível definir uma taxa máxima de transferência para cada uma das portas do comutador. O quarto módulo (Output Queues) implementa as filas de saída do comutador. Este módulo faz parte de plataforma NetFPGA, mas alguns erros foram encontrados e corrigidos durante o processo de verificação. Os blocos foram projetados utilizando Verilog HDL e visando as suas implementações em ASIC, baseado em uma tecnologia de 180 nanômetros da TSMC com a metodologia Semi-Custom baseada em standard cells. Para a verificação funcional foi utilizada a linguagem SystemVerilog. Uma abordagem de estímulos aleatórios restritos é utilizada em um ambiente de testbench com capacidade de verificação automática. Os resultados da verificação funcional indicam que foi atingido um alto porcentual de cobertura de código e funcional. Estes indicadores avaliam a qualidade e a confiabilidade da verificação funcional. Os resultados da implementação em ASIC amostram que os quatro módulos desenvolvidos atingem a freqüência de operação (125 MHz) definida para o funcionamento completo do comutador. Os resultados de área e potência mostram que o módulo das Filas de saída possui a maior área e consumo de potência. Este módulo representa o 92% da área (115 K portas lógicas equivalentes) e o 70% da potência (542 mW) do “User Data Path”. / This work presents the design, functional verification and synthesis of the functional modules of a Gigabit Ethernet switch. The functions of these modules are defined in the IEEE 802.1D, IEEE 802.1Q, IEEE 802.3 standards and the following RFCs (Request for Comments): RFC 2697, RFC 2698 and RFC 4115. These modules are part of the functional core of the switch and implement the principal functions of it. In this work four modules are developed and validated. These modules were designed to be inserted in the NetFPGA platform, as part of the “User Data Path”. This platform was developed at Stanford University to enable the fast prototype of networking hardware. The first module called “input arbiter” decides which input port to serve next. This module uses an algorithm Deficit Round Robin (DRR). This algorithm corrects a problem found in the original module developed in the NetFPGA platform. The second module is the classification engine. The main function of the MAC address classification engine is to forward Ethernet frames to their corresponding output ports. To accomplish this task, it stores the source MAC address from frames in a SRAM memory and associates it to one of the input ports. This classification engine uses a hashing scheme that has been proven to be effective in terms of performance and implementation cost. It can search effectively 62.5 million frames per second, which is enough to work at wire-speed rate in a 42-port Gigabit switch. The main challenge was to achieve wire-speed rate during the “learning” process using external SRAM memory. The third module is the frame marker. This module is part of the quality of service mechanism (QoS). With this module is possible to define a maximum transmission rate for each port of the switch. The fourth module (Output Queues) implements the output queues of the switch. This module is part of the NetFPGA platform, but some errors were found and corrected during the verification process. These module were designed using Verilog HDL, targeting the NetFPGA prototype board and an ASIC based on a 180 nm process from TSMC with the Semi-custom methodology based on standard cells. For the functional verification stage is used the SystemVerilog language. A constrained-random stimulus approach is used in a layered-testbench environment with self-checking capability. The results from the functional verification indicate that it was reached a high percentage of functional and code coverage. These indicators evaluate the quality and reliability of the functional verification. The results from the ASIC implementation show that the four modules developed achieve the operation frequency (125 MHz) defined for the overall switch operation. The area and power results demonstrate that the Output Queues module has the largest area and power consumption. This module represents the 92% of area (115 K equivalent logic gates) and the 70% of power (542 mW) from the User Data Path.
5

Projeto, verificação funcional e síntese de módulos funcionais para um comutador Gigabit Ethernet / Design, functional verification and synthesis of functional modules for a gigabit ethernet switch

Seclen, Jorge Lucio Tonfat January 2011 (has links)
Este trabalho apresenta o projeto, a verificação funcional e a síntese dos módulos funcionais de um comutador Gigabit Ethernet. As funções destes módulos encontramse definidas nos padrões IEEE 802.1D, IEEE 802.1Q, IEEE 802.3 e nos seguintes RFCs (Request for Comments): RFC 2697, RFC 2698 e RFC 4115. Estes módulos formam o núcleo funcional do comutador e implementam as principais funções dele. Neste trabalho quatro módulos são desenvolvidos e validados. Estes módulos foram projetados para serem inseridos na plataforma NetFPGA, formando o chamado “User Data Path”. Esta plataforma foi desenvolvida pela universidade de Stanford para permitir a prototipagem rápida de hardware para redes. O primeiro módulo chamado de “Árbitro de entrada” decide qual das portas de entrada do comutador ele vai atender, para que os quadros que ingressam por essa porta sejam processados. Este módulo utiliza um algoritmo Deficit Round Robin (DRR). Este algoritmo corrige um problema encontrado no módulo original desenvolvido na plataforma NetFPGA. O segundo módulo é o “Pesquisador da porta de saída”. O bloco principal deste módulo é o motor de classificação. A função principal do motor de classificação e aprendizagem de endereços MAC é encaminhar os quadros à suas respectivas portas de saída. Para cumprir esta tarefa, ele armazena o endereço MAC de origem dos quadros em uma memória SRAM e é associado a uma das portas de entrada. Este motor de classificação utiliza um mecanismo de hashing que foi provado que é eficaz em termos de desempenho e custo de implementação. São apresentadas duas propostas para implementar o motor de classificação. Os resultados da segunda proposta permite pesquisar efetivamente 62,5 milhões de quadros por segundo, que é suficiente para trabalhar a uma taxa wire-speed em um comutador Gigabit de 42 portas. O maior desafio foi conseguir a taxa de wire-speed durante o processo de “aprendizagem” usando uma memória SRAM externa. O terceiro módulo é o marcador de quadros. Este módulo faz parte do mecanismo de qualidade de serviço (QoS). Com este módulo é possível definir uma taxa máxima de transferência para cada uma das portas do comutador. O quarto módulo (Output Queues) implementa as filas de saída do comutador. Este módulo faz parte de plataforma NetFPGA, mas alguns erros foram encontrados e corrigidos durante o processo de verificação. Os blocos foram projetados utilizando Verilog HDL e visando as suas implementações em ASIC, baseado em uma tecnologia de 180 nanômetros da TSMC com a metodologia Semi-Custom baseada em standard cells. Para a verificação funcional foi utilizada a linguagem SystemVerilog. Uma abordagem de estímulos aleatórios restritos é utilizada em um ambiente de testbench com capacidade de verificação automática. Os resultados da verificação funcional indicam que foi atingido um alto porcentual de cobertura de código e funcional. Estes indicadores avaliam a qualidade e a confiabilidade da verificação funcional. Os resultados da implementação em ASIC amostram que os quatro módulos desenvolvidos atingem a freqüência de operação (125 MHz) definida para o funcionamento completo do comutador. Os resultados de área e potência mostram que o módulo das Filas de saída possui a maior área e consumo de potência. Este módulo representa o 92% da área (115 K portas lógicas equivalentes) e o 70% da potência (542 mW) do “User Data Path”. / This work presents the design, functional verification and synthesis of the functional modules of a Gigabit Ethernet switch. The functions of these modules are defined in the IEEE 802.1D, IEEE 802.1Q, IEEE 802.3 standards and the following RFCs (Request for Comments): RFC 2697, RFC 2698 and RFC 4115. These modules are part of the functional core of the switch and implement the principal functions of it. In this work four modules are developed and validated. These modules were designed to be inserted in the NetFPGA platform, as part of the “User Data Path”. This platform was developed at Stanford University to enable the fast prototype of networking hardware. The first module called “input arbiter” decides which input port to serve next. This module uses an algorithm Deficit Round Robin (DRR). This algorithm corrects a problem found in the original module developed in the NetFPGA platform. The second module is the classification engine. The main function of the MAC address classification engine is to forward Ethernet frames to their corresponding output ports. To accomplish this task, it stores the source MAC address from frames in a SRAM memory and associates it to one of the input ports. This classification engine uses a hashing scheme that has been proven to be effective in terms of performance and implementation cost. It can search effectively 62.5 million frames per second, which is enough to work at wire-speed rate in a 42-port Gigabit switch. The main challenge was to achieve wire-speed rate during the “learning” process using external SRAM memory. The third module is the frame marker. This module is part of the quality of service mechanism (QoS). With this module is possible to define a maximum transmission rate for each port of the switch. The fourth module (Output Queues) implements the output queues of the switch. This module is part of the NetFPGA platform, but some errors were found and corrected during the verification process. These module were designed using Verilog HDL, targeting the NetFPGA prototype board and an ASIC based on a 180 nm process from TSMC with the Semi-custom methodology based on standard cells. For the functional verification stage is used the SystemVerilog language. A constrained-random stimulus approach is used in a layered-testbench environment with self-checking capability. The results from the functional verification indicate that it was reached a high percentage of functional and code coverage. These indicators evaluate the quality and reliability of the functional verification. The results from the ASIC implementation show that the four modules developed achieve the operation frequency (125 MHz) defined for the overall switch operation. The area and power results demonstrate that the Output Queues module has the largest area and power consumption. This module represents the 92% of area (115 K equivalent logic gates) and the 70% of power (542 mW) from the User Data Path.
6

Extending FTT-SE protocol for Multi-Master/Multi-Slave Networks

Ashjaei, Seyed Mohammad Hossein January 2012 (has links)
Ethernet Switches are widely used in real-time distributed systems as a solution to guarantee the real-time behavior in communication. In this solution there are still some limitations which are the important obstacles obtaining timeliness in the network. These limitations are the limited number of priority levels as well as the possibility of memory overruns with consequent messages. The mentioned limitations can be eliminated using a master/slave technique along with FTT paradigm. The FTT-SE protocol which is a technique based on the master/slave and FTT methods was proposed to overcome the mentioned limitations. However, the FTT-SE protocol has been investigated for a small network architecture with a single switch and master node. Extension of this solution to larger networks is still an open issue. Three different architectures were suggested to scale the FTT-SE to large scale network. In this thesis we propose a solution that extends the FTT-SEprotocol while keeping the real-time behavior of the network. In this solution, we divided the network into a set of sub-networks, each contains one switch, set of slave nodes and one master node that connected to the associated switch in the network. Moreover, the switches are connected together directly without gateways and form a tree topology network. The solution includes both synchronous and asynchronous traffic in the network. We also show that the timeliness of the traffic can still be enforced. Moreover, to validate the solution we have designed and implemented a simulator based on the Matlab/Simulink which is a tool to evaluate different network architecture using Simulink blocks. All transmission can be visualized by the ordinary Scope block in the Simulink. Moreover, the end-to-end delay for all messages is calculated after the simulation running to show the response time of the network. Furthermore, the response time analysis is done for both synchronous and asynchronous messages in this thesis according to the proposed solution. The results from simulation and the analysis are compared together to validate the investigations.
7

A Soft-Error Reliability Testing Platform for FPGA-Based Network Systems

Rowberry, Hayden Cole 01 December 2019 (has links)
FPGAs are frequently used in network systems to provide the performance and flexibility that is required of modern computer networks while allowing network vendors to bring products to market quickly. Like all electronic devices, FPGAs are vulnerable to ionizing radiation which can cause applications operating on an FPGA to fail. These low-level failures can have a wide range of negative effects on the performance of a network system. As computer networks play a larger role in modern society, it becomes increasingly important that these soft errors are addressed in the design of network systems.This work presents a framework for testing the soft-error reliability of FPGA-based networking systems. The framework consists of the NetFPGA development board, a custom traffic generator, and a custom high-speed JTAG configuration device. The NetFPGA development board is versatile and can be used to implement a wide range of network applications. The traffic generator is used to exercise the network system on the NetFPGA and to determine the health of that system. The JTAG configuration device is used to manage reliability experiments, to perform fault injection into the FPGA, and to monitor the NetFPGA during radiation tests.This thesis includes soft-error reliability tests that were performed on an Ethernet switch network system. Using both fault injection and accelerate radiation testing, the soft error sensitivity of the Ethernet switch was measured. The Ethernet switch design was then mitigated using triple module redundancy and duplication with compare. These mitigated designs were also tested and compared against the baseline design. Radiation testing shows that TMR provides a 5.05x improvement in reliability over the baseline design. DWC provides a 5.22x improvement in detectability over the baseline design without reducing the reliability of the system.
8

Low-Latency Hard Real-Time Communication over Switched Ethernet

Löser, Jork 31 January 2006 (has links)
With the upsurge in the demand for high-bandwidth networked real-time applications in cost-sensitive environments, a key issue is to take advantage of developments of commodity components that offer a multiple of the throughput of classical real-time solutions. It was the starting hypothesis of this dissertation that with fine grained traffic shaping as the only means of node cooperation, it should be possible to achieve lower guaranteed delays and higher bandwidth utilization than with traditional approaches, even though Switched Ethernet does not support policing in the switches as other network architectures do. This thesis presents the application of traffic shaping to Switched Ethernet and validates the hypothesis. It shows, both theoretically and practically, how commodity Switched Ethernet technology can be used for low-latency hard real-time communication, and what operating-system support is needed for an efficient implementation.

Page generated in 0.0656 seconds