• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 32
  • 10
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 104
  • 26
  • 25
  • 24
  • 21
  • 19
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

\"Estudo da eletrooxidação de etileno glicol e de seus produtos de oxidação parcial em eletrodos de Pt e PtRu\" / \"Study of ethylene glycol electrooxidation and its partial products oxidation on Pt and PtRu electrodes\"

Roberto Batista de Lima 18 December 2006 (has links)
A eletrooxidação de etileno glicol e de seus produtos parciais de oxidação foram estudadas em eletrodos de Pt e eletrodos binários de PtRu, utilizando-se técnicas eletroquímicas fundamentais, espectroscopia de infravermelho por reflexão externa e cromatografia líquida de alta eficiência. Os resultados evidenciam um efeito catalítico na oxidação de etileno glicol com a quantidade de Ru no eletrodo até um máximo de corrente de 11mA cm-2 entre 30% a 40% em Ru. Experimentos de espectroscopia de infravermelho in situ detectaram espécies adsorvidas, como o CO, e espécies residuais contendo dois átomos de carbono. Os produtos solúveis foram glicolaldeído, ácido glicólico e CO2. Bandas bipolares de CO indicam que o etileno glicol já está totalmente dissociado no potencial de referência (0,05 V vs. RHE). Espécies contendo o grupo carbonila como o glicolaldeído também são observadas no potencial de referência (0,05 V vs RHE). A formação de CO2 é influenciada não só pela concentração do álcool em solução como também pela quantidade superficial de Ru no eletrodo. A eletrooxidação de ácido glicólico mostra a formação de CO2 a baixos potenciais (0,20 vs. RHE) e CO adsorvido a um potencial de 0,40 V. / The eletrooxidation of ethylene glycol and its partial oxidation products, glycolic acid and glycolaldehyde was studied on Pt and PtRu electrodes. Cyclic voltammetry and chronoamperometry were used for the electrochemical characterization. The nature of the reaction products and intermediates was studied by in situ Fourier transform infrared spectroscopy and high performance liquid chromatography. The oxidation reaction is catalyzed by PtRu; the maximum current density observed was 11 μA cm-2 for a ruthenium content between 30% and 40%. Adsorbed CO and residual species containing two carbon atoms as well as CO2 glycolaldehide and glycolic acid were detected by FTIR spectroscopy. Although the quantitative determination of glycolaldehyde was not possible, the results allowed an indirect estimation of this product, which starts to be formed already at 0.05V. It was found that glycolaldehyde is the main reaction product. PtRu favors the scission of the C-C bond. Thus, much higher CO coverage was found at the alloy than at pure Pt. An increase in the amount of glycolaldehyde at PtRu indicates that this material also catalyzes the scission of the C-H bond. This effect is probably due to an electronic modification of Pt caused by the presence of ruthenium, since pure Ru is not active for adsorbing or oxidizing ethylene glycol and much less Pt sites are available at PtRu.
22

Dinâmica oscilatória na eletrooxidação de etileno glicol / Oscillatory dynamics in the ethylene glycol electrooxidation reaction

Elton Fabiano Sitta 01 February 2008 (has links)
No presente trabalho foram estudados alguns aspectos não lineares da catálise da oxidação de etileno glicol (EG) sob platina em meio alcalino (KOH). A dinâmica do sistema foi investigada através de voltametria cíclica, séries temporais de corrente e potencial e por espectroscopia de impedância eletroquímica. (EIE). Os resultados da EIE revelaram a presença de uma região de resistência diferencial negativa escondida nas proximidades o pico principal obtido na voltametria cíclica. De modo geral o sistema se mostrou apto a oscilar tanto sob regime potenciostático quanto galvanostático e por longos períodos de tempo apresentando uma miríade de estados dinâmicos que incluem oscilações harmônicas, de baixa e alta amplitudes, períodos 2, 3, 4 e modos mistos, além da duplicação de período na transição para o caos. A concentração tanto de EG como de KOH tiveram caráter essencial nos padrões temporais observados. A complexidade dos períodos aumenta com o aumento da concentração de EG resultando em 90% do tempo em que o sistema passa oscilando devotado às oscilações caóticas quando a concentração de EG é de 1,6 M. O aumento da densidade de corrente produz um efeito contrário nos padrões, ou seja, quanto mais alta é a corrente mais simples são os períodos. A influência de alguns produtos de oxidação parcial do EG foi estudada em diferentes condições. Os resultados das mudanças de morfologia das oscilações são racionalizados em termos das eventuais conexões com os intermediários de reação formados durante o processo de oxidação que, por sua vez, dependem da concentração do álcool e da densidade de corrente. / In the present work were studied some nonlinear aspects of the catalytic oxidation of ethylene glycol (EG) on platinum electrodes in alkaline media (KOH). The system\'s dynamics was investigated by means of cyclic voltammetry, current and potential time series, and electrochemical impedance spectroscopy (EIS). The EIS results reveal the presence of a hidden negative differential resistance around the main voltammetric peak. Overall, the system was able to oscillate for several periods, displaying a myriad of dynamic states which includes harmonic, small and large amplitude, periods 2, 3, and 4, and mixed-mode oscillations, as well as period doubling transition to chaos. The concentration of both EG and KOH were found to play an essential role in the temporal patterns observed. The complexity of the periods increase with EG concentration resulting in 90% of the oscillating time devoted to chaotic patters when EG concentration is 1.6 M. The increment of the current density produces an opposite behavior of the patters: the higher the applied current the simpler the oscillatory dynamics. The influence of some products of partial EG oxidation was studied under different conditions and compared. The results of the changes in the oscillatory morphology are rationalized in terms of its eventual connection with reaction intermediates formed during the oxidation process that, in turn, depends on the alcohol concentration and on the current density.
23

Covalent modification of antibody fragments

French, Alister Charles January 2008 (has links)
No description available.
24

Preparation and properties of polybenzodioxane PIM-1 and its copolymers with poly(ethylene glycol)

Laghari, Gul Mohammad January 2011 (has links)
This thesis describes the synthesis of soluble Polymer of Intrinsic Microporosity (PIM-1), fluoro-endcapped PIM-1 (F-PIM-1) and copolymers of F-PIM-1 with poly(ethylene glycol) monomethyl ether (MeOPEG). The main aim of the project was to alter the porosity of microporous PIM-1 in three ways: (a) synthesis of copolymers of F-PIM-1 with MeOPEG (b) blending of PIM-1 with MeOPEG in various proportions; and (c) adsorption of MeOPEG from aqueous solution byPIM-1. PIM-1 and F-PIM-1 were synthesized by step growth polymerization of tetrafluoroterephthalonitrile (TFTPN) with 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (THSB), using the conventional method and a newly reported high shear mixing method. F-PIM-1 oligomers were then coupled to poly(ethylene glycol) monomethyl ether (MeOPEG). The products were analyzed by NMR, IR, MALDI ToF MSS, TGA and polystyrene based GPC as well as multidetector GPC techniques. The high shear technique generally produced high molar mass products and yields. This method was also more successful for copolymerization.Blending of PIM-1 and MeOPEG in different proportions resulted in macrophase separation. Copolymer products were used to facilitate mixing of blends (as compatibilizers), however only 5% of MeOPEG could be solubilised into a PIM-1 phase. The effect of compatibilizer was found to be affected by interaction between PIM-1 and copolymer. However, N2 adsorption studies showed that after thermal removal of MeOPEG, PIM-1 regained stable porosity with significant BET surface area.Fluorescence studies were aimed at applications of PIM-1 and copolymers in sensors. PIM-1 and copolymers, spin-coated on the polyester-based substrate Melinex, were studied with and without methanol treatment in an environment of different solvent vapours. The effect of time and volume on wavelength shift and change in intensity was studied. Polar solvents tended to cause a red shift with decrease in intensity while less polar solvents behaved otherwise. Based on fluorescence experiments, solvent profiles for PIM-1 and copolymers were established.
25

Enzymatic crosslinking of dynamic hydrogels for in vitro cell culture

Arkenberg, Matthew R. 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Stiffening and softening of extracellular matrix (ECM) are critical processes governing many aspects of biological processes. The most common practice used to investigate these processes is seeding cells on two-dimensional (2D) surfaces of varying stiffness. In recent years, cell-laden three-dimensional (3D) scaffolds with controllable properties are also increasingly used. However, current 2D and 3D culture platforms do not permit spatiotemporal controls over material properties that could influence tissue processes. To address this issue, four-dimensional (4D) hydrogels (i.e., 3D materials permitting time-dependent control of matrix properties) are proposed to recapitulate dynamic changes of ECM properties. The goal of this thesis was to exploit orthogonal enzymatic reactions for on-demand stiffening and/or softening of cell-laden hydrogels. The first objective was to establish cytocompatible hydrogels permitting enzymatic crosslinking and stiffening using enzymes with orthogonal reactivity. Sortase A (SrtA) and mushroom tyrosinase (MT) were used sequentially to achieve initial gelation and on-demand stiffening. In addition, hydrogels permitting reversible stiffening through SrtA-mediated peptide ligation were established. Specifically, poly(ethylene glycol) (PEG)-peptide hydrogels were fabricated with peptide linkers containing pendent SrtA substrates. The hydrogels were stiffened through incubation with SrtA, whereas gel softening was achieved subsequently via addition of SrtA and soluble glycine substrate. The second objective was to investigate the role of dynamic matrix stiffening on pancreatic cancer cell survival, spheroid formation, and drug responsiveness. The crosslinking of PEG-peptide hydrogels was dynamically tuned to evaluate the effect of matrix stiffness on cell viability and function. Specifically, dynamic matrix stiffening inhibited cell proliferation and spheroid formation, while softening the cell-laden hydrogels led to significant increase in spheroid sizes. Matrix stiffness also altered the expression of chemoresistance markers and responsiveness of cancer cells to gemcitabine treatment. markers and responsiveness of cancer cells to gemcitabine treatment.
26

An Assessment of Poly(Ethylene Glycol) Based SAMs As An Antifouling Strategy for Parkinson’s Disease Diagnostic OECT Biosensors

Almaghrabi, Rania 04 1900 (has links)
Electrochemical biosensors have been used to detect biomarkers sensitively at low limits of detection. The organic electrochemical transistor (OECT) is a special class of electrochemical biosensors characteristically known for its intrinsic amplification abilities. Nevertheless, if the biosensor is to be used with real clinical samples a strategy aiming to increase the specificity of the device other than the dependance on the respective biorecognition unit is necessary to minimize, if not eliminate, interference from foulants in complex biological media. In this work we test the antifouling performance of several Poly(ethylene glycol) based SAMs using Electrochemical impedance spectroscopy (EIS). We also evaluate the overall performance of the device and its ability to detect total α-synuclein, its aggregate and phosphorylated forms spiked in heat-inactivated human serum. Limits of detection in the fM and aM ranges were achieved.
27

Design and Synthesis of Multifuntional Poly(Ethylene Glycol)S Using Enzymatic Catalysis for Multivalent Cancer Drug Delivery

Seo, Kwang Su 01 May 2012 (has links)
No description available.
28

Poly(ethylene glycol) Microgels Formed by a Precipitation Reaction as Drug Delivery Vehicles

Thompson, Susan Marie 18 December 2012 (has links)
No description available.
29

Polyamide desalination membrane characterization and surface modification to enhance fouling resistance

Van Wagner, Elizabeth Marie 31 January 2011 (has links)
The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ([microgram]/cm2), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling. / text
30

New grafted PLA-g-PEG polymeric nanoparticles used to improve bioavailability of oral drugs

Mokhtar, Mohamed 02 1900 (has links)
No description available.

Page generated in 0.0448 seconds