• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle Passif Nonlinéaire du Phénomène de Résonance Sol des Hélicoptères / Nonlinear Passive Control of Helicopter Ground Resonance

Pafume Coelho, João Flavio 25 September 2017 (has links)
Le phénomène de résonance sol (PRS) est une instabilité pouvant survenir lorsque l’hélicoptère est au sol et le rotor est en marche ; elle peut vite aboutir à la destruction de l’appareil. L’origine de l’instabilité est un couplage entre les mouvements de roulis du fuselage posée sur le train d’atterrissage et le mouvement asymétrique de l’ensemble des pales dans le plan du rotor principal. Etudier théoriquement des alternatives de stabilisation par des absorbeurs de vibration linéaires (tuned mass dampers - TMD) et non linéaires (nonlinear energy sinks - NES) c’est le sujet de ce travail de thèse. Ces possibilités sont étudiées en ajoutant à un modèle minimal d’un hélicoptère à quatre pales identiques (rotor isotrope),précédemment étudié par l’équipe de l’ISAE, d’abord, un TMD au fuselage, puis des TMD identiques auniveau de l’articulation des pales du rotor. Ensuite, des dispositifs à raideur purement non linéaire (NES)sont considérées, d’abord, au fuselage, puis, aux pales du rotor (NES identiques). / Helicopter ground resonance (HGR) is an instability phenomenon that can occur when helicopters exhibit a spinning rotor when grounded; it can lead the structure to rapidly break apart. The phenomenon originates from a coupling between asymmetric modes of in plane blade oscillations (lead/ lag) and the roll of a grounded fuselage. The verification of alternative stabilization devices such as tuned mass dampers (TMD) and nonlinear absorbers (nonlinear energy sinks - NES) is the objective of this thesis. These possibilities are theoretically investigated by embedding a four-bladed helicopter minimal model - proposed and previously studied by the ISAE team - first, with a TMD in the fuselage, then with four identical TMDs in each blade lag hinge. Then, a NES attached to the fuselage is considered and eventually a set of four identical NES attached to the blade lag hinges of the model is proposed and analyzed.
2

Thermomechanical modeling of the solidification process of an aqueous urea solution / Modélisation thermomécanique du processus de solidification d’une solution aqueuse d’urée

Liu, Deqi 16 May 2019 (has links)
De nombreux liquides subissent un changement de volume lorsqu'ils gèlent. Pour l'eau et certaines solutions aqueuses, l'expansion volumétrique au cours de la solidification peut entraîner une série de problèmes mécaniques. Dans l'industrie automobile, l'expansion de changement de phase (ECP) met en cause la sécurité des réservoirs des véhicules aux saisons froides. Une des questions les plus problématiques est l'expansion de la solution aqueuse d'urée (SAU) dans le réservoir du système SCR des véhicules diesels. Lorsque le liquide gèle, les composants intérieurs ainsi que le réservoir lui-même peuvent être endommagés dû à la pression apportée par la dilatation du liquide solidifié. Dans le centre , une méthode numérique est fortement attendue afin de prévoir la répartition de la température, des contraintes ainsi que de la déformation des composants lors d'un processus de solidification. Du fait que les informations sur la solution d'urée restent limitées, la structure de la glace cristalline ainsi que ses comportements mécaniques sont principalement passés en revue. La préférence d'orientation de croissance des grains de glace à l'interface de cristallisation met en évidence, l'hypothèse de l'ECP non-isotropique pour des problèmes de solidification. Une série de tests mécaniques a été réalisée afin d'obtenir les propriétés basiques de SAU à l'état solide à différentes températures. Une méthode « différence-volume » a été appliquée pour mesurer la variation de la densité de la SAU lors du processus de solidification. Pour la suite, des études analytiques thermiques et mécaniques sont effectuées. Pour l'aspect thermique, le problème classique de Stefan est passé en revue. Un schéma de différence-finie est proposé et il permet de calculer la position de l'interface et les profils de température pour un modèle sphérique. Pour l'aspect mécanique, un modèle sphérique similaire est établi à la base de l'ECP non-isotropique. Les solutions analytiques des contraintes et de la pression liquide sont présentées en fonction de la position de l'interface. Une méthode éléments-finis thermo-mécaniquement couplée est développée afin de simuler efficacement les contraintes thermiques, les déformations et la pression liquide dans un problème de solidification avec des relations constitutives de comportement non-linéaires. Les contraintes thermiques sont calculées en chaque point d'intégration en résolvant les équations elasto-viscoplastiques avec l'ECP non-isotropique. Le problème aux limites est résolu par la méthode de Newton-Raphson. Cette procédure est implémentée dans le package Abaqus via un UMAT. La méthode est validée d'abord pour les aspects algorithmiques par les solutions analytiques, puis pour les paramètres de comportement retenus par une série de tests expérimentaux. De plus, une étude de cas réaliste sur un réservoir de la SAU est introduite. Les avantages et les limitations de la méthode numérique lors d'une application sont évalués. / Many liquids involve a change in volume when they freeze. For water and some aqueous solutions, the volumetric expansion during solidification may invoke a series of mechanical issues. In automobile industries, the security of tanks installed in vehicles is challenged by the Phase-Change Expansion (PCE) of the freezing liquid in cold conditions. One of the most problematic issues is the expansion of Aqueous Urea Solution (AUS) in the SCR tank of diesel vehicles. As the liquid freezes, interior components may be deformed under the stress or pressure of the expanding AUS, potentially leading to failures of the storage tank. In the product center, a numerical method is of high demand to perform thermo-mechanical analysis to predict the temperature and stress distribution during a liquid solidification process in their tanks. In this work, a bibliographic study is carried out first on the basic knowledge of the ice and AUS. Due to the very limited information on urea solution in the literature, the structure and behaviors of freshwater ice are mainly reviewed. The grain orientation preference at the growth interface of polycrystalline ice provides the evidence of non-isotropic PCE for the solidification problem. A series of mechanical tests have been performed to characterize the basic properties of the solidified AUS at different temperatures. The density evolution is measured using a volume-difference method. Then, both thermal and mechanical analytical studies are performed. The classical thermal Stefan problem is reviewed and a finite-difference scheme is proposed to calculate the interface position and temperature profiles of a spherical solidification model. Mechanically, a similar spherical model is established based on the non-isotropic PCE phenomenon of ice growth. The solutions of stress distribution and liquid pressure evolution are given as a function of the solidification interface position. Finally, an efficient thermo-mechanical FEM is proposed to evaluate the thermal stress, strain, displacement and pressure in solidification problems with highly nonlinear relations. Three particular methods for treating the liquid phase with fixed-grid approaches are introduced. The thermal stress is computed at each integration point by integrating the elasto-viscoplastic constitutive equations with non-isotropic PCE. Then, the boundary value problem is solved using the full Newton-Raphson method. This procedure is implemented into the FE package Abaqus via a UMAT subroutine. The numerical model is validated first for the algorithmic aspect by the analytical solutions, and then for the parametric calibration by a series of benchmark tests. In the end, a realistic study case on a real-size AUS storage tank is introduced. Advantages and limitations of the numerical method in the application are evaluated.

Page generated in 0.3705 seconds