Spelling suggestions: "subject:"european captions"" "subject:"european descrptions""
1 |
Pricing European options : a model-free approachNkosi, Siboniso Confrence January 2016 (has links)
>Magister Scientiae - MSc / This paper focuses on the newly revived interest to model free approach in finance. Instead of postulating some probability measure it emerges in a form of an outer-measure. We review the behavior of a market stock price and the stochastic assumptions imposed to the stock price when deriving the Black-Scholes formula in the classical case. Without any stochastic assumptions we derive the Black-Scholes formula using a model free approach. We do this by means of protocols that describe the market/game. We prove a statement that prices a European option in continuous time.
|
2 |
Asymptotic Methods for Pricing European Option in a Market Model With Two Stochastic VolatilitiesCanhanga, Betuel January 2016 (has links)
Modern financial engineering is a part of applied mathematics that studies market models. Each model is characterized by several parameters. Some of them are familiar to a wide audience, for example, the price of a risky security, or the risk free interest rate. Other parameters are less known, for example, the volatility of the security. This parameter determines the rate of change of security prices and is determined by several factors. For example, during the periods of stable economic growth the prices are changing slowly, and the volatility is small. During the crisis periods, the volatility significantly increases. Classical market models, in particular, the celebrated Nobel Prize awarded Black–Scholes–Merton model (1973), suppose that the volatility remains constant during the lifetime of a financial instrument. Nowadays, in most cases, this assumption cannot adequately describe reality. We consider a model where both the security price and the volatility are described by random functions of time, or stochastic processes. Moreover, the volatility process is modelled as a sum of two independent stochastic processes. Both of them are mean reverting in the sense that they randomly oscillate around their average values and never escape neither to very small nor to very big values. One is changing slowly and describes low frequency, for example, seasonal effects, another is changing fast and describes various high frequency effects. We formulate the model in the form of a system of a special kind of equations called stochastic differential equations. Our system includes three stochastic processes, four independent factors, and depends on two small parameters. We calculate the price of a particular financial instrument called European call option. This financial contract gives its holder the right (but not the obligation) to buy a predefined number of units of the risky security on a predefined date and pay a predefined price. To solve this problem, we use the classical result of Feynman (1948) and Kac (1949). The price of the instrument is the solution to another kind of problem called boundary value problem for a partial differential equation. The resulting equation cannot be solved analytically. Instead we represent the solution in the form of an expansion in the integer and half-integer powers of the two small parameters mentioned above. We calculate the coefficients of the expansion up to the second order, find their financial sense, perform numerical studies, and validate our results by comparing them to known verified models from the literature. The results of our investigation can be used by both financial institutions and individual investors for optimization of their incomes.
|
3 |
Implied Volatility Surface Approximation under a Two-Factor Stochastic Volatility ModelAhy, Nathaniel, Sierra, Mikael January 2018 (has links)
Due to recent research disproving old claims in financial mathematics such as constant volatility in option prices, new approaches have been incurred to analyze the implied volatility, namely stochastic volatility models. The use of stochastic volatility in option pricing is a relatively new and unexplored field of research with a lot of unknowns, where new answers are of great interest to anyone practicing valuation of derivative instruments such as options. With both single and two-factor stochastic volatility models containing various correlation structures with respect to the asset price and differing mean-reversions of variance the question arises as to how these values change their more observable counterpart: the implied volatility. Using the semi-analytical formula derived by Chiarella and Ziveyi, we compute European call option prices. Then, through the Black–Scholes formula, we solve for the implied volatility by applying the bisection method. The implied volatilities obtained are then approximated using various models of regression where the models’ coefficients are determined through the Moore–Penrose pseudo-inverse to produce implied volatility surfaces for each selected pair of correlations and mean-reversion rates. Through these methods we discover that for different mean-reversions and correlations the overall implied volatility varies significantly and the relationship between the strike price, time to maturity, implied volatility are transformed.
|
4 |
Oceňování finančních derivátů - evropské opce / Pricing of Financial derivatives – European optionsMertl, Jakub January 2008 (has links)
In the present study I deal with a pricing of derivatives especially with the European option. In the first chapter there are described basic principles of pricing financial derivatives. I focus on the options strategies from the simplest to the more difficult one. The second chapter is dedicated to the Binomial pricing model. It is introduced its derivation, application, its pro and con. Next chapter contains a description of Black-Scholes model. Again it is explained derivation of this model and its properties. At the end of this chapter it is described relationship between Binomial and Black-Scholes models. The forth chapter is consisted of an analysis of real data of stocks company Philip Morris International, Lehman brothers Holding and American Insurance Group. I focus on the relationship between shares and options in time of the financial crisis. Last chapter is dedicated to the description of software concerning options which was created in Microsoft Excel and which is part of this study.
|
5 |
Implied volatility expansion under the generalized Heston modelAndersson, Hanna, Wang, Ying January 2020 (has links)
In this thesis, we derive a closed-form approximation to the implied volatility for a European option, assuming that the underlying asset follows the generalized Heston model. A new para- meter is added to the Heston model which constructed the generalized Heston model. Based on the results in Lorig, Pagliarani and Pascucci [11], we obtain implied volatility expansions up to third-order. We conduct numerical studies to check the accuracy of our expansions. More specifically we compare the implied volatilities computed using our expansions to the results by Monte Carlo simulation method. Our numerical results show that the third-order implied volatility expansion provides a very good approximation to the true value.
|
6 |
Option prices in stochastic volatility models / Prix d’options dans les modèles à volatilité stochastiqueTerenzi, Giulia 17 December 2018 (has links)
L’objet de cette thèse est l’étude de problèmes d’évaluation d’options dans les modèles à volatilité stochastique. La première partie est centrée sur les options américaines dans le modèle de Heston. Nous donnons d’abord une caractérisation analytique de la fonction de valeur d’une option américaine comme l’unique solution du problème d’obstacle parabolique dégénéré associé. Notre approche est basée sur des inéquations variationelles dans des espaces de Sobolev avec poids étendant les résultats récents de Daskalopoulos et Feehan (2011, 2016) et Feehan et Pop (2015). On étudie aussi les propriétés de la fonction de valeur d’une option américaine. En particulier, nous prouvons que, sous des hypothèses convenables sur le payoff, la fonction de valeur est décroissante par rapport à la volatilité. Ensuite nous nous concentrons sur le put américaine et nous étendons quelques résultats qui sont bien connus dans le monde Black-Scholes. En particulier nous prouvons la convexité stricte de la fonction de valeur dans la région de continuation, quelques propriétés de la frontière libre, la formule de Prime d’Exercice Anticipée et une forme faible de la propriété du smooth fit. Les techniques utilisées sont de type probabiliste. Dans la deuxième partie nous abordons le problème du calcul numérique du prix des options européennes et américaines dans des modèles à volatilité stochastiques et avec sauts. Nous étudions d’abord le modèle de Bates-Hull-White, c’est-à-dire le modèle de Bates avec un taux d’intérêt stochastique. On considère un algorithme hybride rétrograde qui utilise une approximation par chaîne de Markov (notamment un arbre “avec sauts multiples”) dans la direction de la volatilité et du taux d’intérêt et une approche (déterministe) par différence finie pour traiter le processus de prix d’actif. De plus, nous fournissons une procédure de simulation pour des évaluations Monte Carlo. Les résultats numériques montrent la fiabilité et l’efficacité de ces méthodes. Finalement, nous analysons le taux de convergence de l’algorithme hybride appliqué à des modèles généraux de diffusion avec sauts. Nous étudions d’abord la convergence faible au premier ordre de chaînes de Markov vers la diffusion sous des hypothèses assez générales. Ensuite nous prouvons la convergence de l’algorithme: nous étudions la stabilité et la consistance de la méthode hybride par une technique qui exploite les caractéristiques probabilistes de l’approximation par chaîne de Markov / We study option pricing problems in stochastic volatility models. In the first part of this thesis we focus on American options in the Heston model. We first give an analytical characterization of the value function of an American option as the unique solution of the associated (degenerate) parabolic obstacle problem. Our approach is based on variational inequalities in suitable weighted Sobolev spaces and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We also investigate the properties of the American value function. In particular, we prove that, under suitable assumptions on the payoff, the value function is nondecreasing with respect to the volatility variable. Then, we focus on an American put option and we extend some results which are well known in the Black and Scholes world. In particular, we prove the strict convexity of the value function in the continuation region, some properties of the free boundary function, the Early Exercise Price formula and a weak form of the smooth fit principle. This is done mostly by using probabilistic techniques.In the second part we deal with the numerical computation of European and American option prices in jump-diffusion stochastic volatility models. We first focus on the Bates-Hull-White model, i.e. the Bates model with a stochastic interest rate. We consider a backward hybrid algorithm which uses a Markov chain approximation (in particular, a “multiple jumps” tree) in the direction of the volatility and the interest rate and a (deterministic) finite-difference approach in order to handle the underlying asset price process. Moreover, we provide a simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed methods.Finally, we analyze the rate of convergence of the hybrid algorithm applied to general jump-diffusion models. We study first order weak convergence of Markov chains to diffusions under quite general assumptions. Then, we prove the convergence of the algorithm, by studying the stability and the consistency of the hybrid scheme, in a sense that allows us to exploit the probabilistic features of the Markov chain approximation
|
7 |
Discrete and continuous time methods of optimization in pension fund managementMuller, Grant Envar January 2010 (has links)
>Magister Scientiae - MSc / Pensions are essentially the only source of income for many retired workers. It is thus critical that the pension fund manager chooses the right type of plan for his/her workers.Every pension scheme follows its own set of rules when calculating the benefits of the fund’s members at retirement. Whichever plan the manager chooses for the members,he/she will have to invest their contributions in the financial market. The manager is therefore faced with the daunting task of selecting the most appropriate investment strat-egy as to maximize the returns from the financial assets. Due to the volatile nature of stock markets, some pension companies have attached minimum guarantees to pension contracts. These guarantees come at a price, but ensure that the member does not suffer
a loss due to poorly performing equities.In this thesis we study four types of mathematical problems in pension fund management,of which three are essentially optimization problems. Firstly, following Blake [5], we show in a discrete time setting how to decompose a pension benefit into a combination of Euro-pean options. We also model the pension plan preferences of workers, sponsors and fund
managers. We make a number of contributions additional to the paper by Blake [5]. In particular, we contribute graphic illustrations of the expected values of the pension fund assets, liabilities and the actuarial surplus processes. In more detail than in the original source, we derive the variance of the assets of a defined benefit pension plan. Secondly,we dedicate Chapter 6 to the problem of minimizing the cost of a minimum guarantee included in defined contribution (DC) pension contracts. Here we work in discrete time and consider multi-period guarantees similar to those in Hipp [25]. This entire chapter is original work. Using a standard optimization method, we propose a strategy that cal- culates an optimal sequence of guarantees that minimizes the sum of the squares of the present value of the total price of the guarantee. Graphic illustrations are included to in-dicate the minimum value and corresponding optimal sequence of guarantees. Thirdly, we
derive an optimal investment strategy for a defined contribution fund with three financial assets in the presence of a minimum guarantee. We work in a continuous time setting and in particular contribute simulations of the dynamics of the short interest rate process and the assets in the financial market of Deelstra et al. [19]. We also derive an optimal investment strategy of the surplus process introduced in Deelstra et al. [19]. The results regarding the surplus are then converted to consider the actual investment portfolio per- taining to the wealth of the fund. We note that the aforementioned paper does not use optimal control theory. In order to illustrate the method of stochastic optimal control, we study a fourth problem by including a discussion of the paper by Devolder et al. [21] in Chapter 3. We enhance the work in the latter paper by including some simulations. The specific portfolio management strategies are applicable to banking as well (and is being
pursued independently).
|
8 |
Stochastic Runge–Kutta Lawson Schemes for European and Asian Call Options Under the Heston ModelKuiper, Nicolas, Westberg, Martin January 2023 (has links)
This thesis investigated Stochastic Runge–Kutta Lawson (SRKL) schemes and their application to the Heston model. Two distinct SRKL discretization methods were used to simulate a single asset’s dynamics under the Heston model, notably the Euler–Maruyama and Midpoint schemes. Additionally, standard Monte Carlo and variance reduction techniques were implemented. European and Asian option prices were estimated and compared with a benchmark value regarding accuracy, effectiveness, and computational complexity. Findings showed that the SRKL Euler–Maruyama schemes exhibited promise in enhancing the price for simple and path-dependent options. Consequently, integrating SRKL numerical methods into option valuation provides notable advantages by addressing challenges posed by the Heston model’s SDEs. Given the limited scope of this research topic, it is imperative to conduct further studies to understand the use of SRKL schemes within other models.
|
9 |
The computation of Greeks with multilevel Monte CarloBurgos, Sylvestre Jean-Baptiste Louis January 2014 (has links)
In mathematical finance, the sensitivities of option prices to various market parameters, also known as the “Greeks”, reflect the exposure to different sources of risk. Computing these is essential to predict the impact of market moves on portfolios and to hedge them adequately. This is commonly done using Monte Carlo simulations. However, obtaining accurate estimates of the Greeks can be computationally costly. Multilevel Monte Carlo offers complexity improvements over standard Monte Carlo techniques. However the idea has never been used for the computation of Greeks. In this work we answer the following questions: can multilevel Monte Carlo be useful in this setting? If so, how can we construct efficient estimators? Finally, what computational savings can we expect from these new estimators? We develop multilevel Monte Carlo estimators for the Greeks of a range of options: European options with Lipschitz payoffs (e.g. call options), European options with discontinuous payoffs (e.g. digital options), Asian options, barrier options and lookback options. Special care is taken to construct efficient estimators for non-smooth and exotic payoffs. We obtain numerical results that demonstrate the computational benefits of our algorithms. We discuss the issues of convergence of pathwise sensitivities estimators. We show rigorously that the differentiation of common discretisation schemes for Ito processes does result in satisfactory estimators of the the exact solutions’ sensitivities. We also prove that pathwise sensitivities estimators can be used under some regularity conditions to compute the Greeks of options whose underlying asset’s price is modelled as an Ito process. We present several important results on the moments of the solutions of stochastic differential equations and their discretisations as well as the principles of the so-called “extreme path analysis”. We use these to develop a rigorous analysis of the complexity of the multilevel Monte Carlo Greeks estimators constructed earlier. The resulting complexity bounds appear to be sharp and prove that our multilevel algorithms are more efficient than those derived from standard Monte Carlo.
|
10 |
Problèmes numériques en mathématiques financières et en stratégies de trading / Numerical problems in financial mathematics and trading strategiesBaptiste, Julien 21 June 2018 (has links)
Le but de cette thèse CIFRE est de construire un portefeuille de stratégies de trading algorithmique intraday. Au lieu de considérer les prix comme une fonction du temps et d'un aléa généralement modélisé par un mouvement brownien, notre approche consiste à identifier les principaux signaux auxquels sont sensibles les donneurs d'ordres dans leurs prises de décision puis alors de proposer un modèle de prix afin de construire des stratégies dynamiques d'allocation de portefeuille. Dans une seconde partie plus académique, nous présentons des travaux de pricing d'options européennes et asiatiques. / The aim of this CIFRE thesis is to build a portfolio of intraday algorithmic trading strategies. Instead of considering stock prices as a function of time and a brownian motion, our approach is to identify the main signals affecting market participants when they operate on the market so we can set up a prices model and then build dynamical strategies for portfolio allocation. In a second part, we introduce several works dealing with asian and european option pricing.
|
Page generated in 0.1212 seconds