• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 199
  • 63
  • 23
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 615
  • 228
  • 228
  • 105
  • 96
  • 75
  • 67
  • 62
  • 61
  • 60
  • 57
  • 53
  • 52
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Apport des données de télédétection haute résolution et haute répétitivité dans la modélisation hydro-météorologique / Contribution of high resolution and high revisit frequency remote sensing in hydrometeorological modelling

Etchanchu, Jordi 12 December 2019 (has links)
Les agrosystèmes sont soumis à de fortes hétérogénéités spatiales et temporelles, notamment du fait des pratiques agricoles. Les modèles de surface, qui servent à quantifier les échanges d'eau et d'énergie entre le sol, la végétation et la basse atmosphère, dits flux hydrométéorologiques, utilisent la plupart du temps des résolutions spatiales trop larges et une description des pratiques agricoles trop simple pour caractériser ces hétérogénéités, faute d'information spatialisée fiable et à fréquence temporelle suffisante pour paramétrer les simulations. Pourtant, réussir à simuler de manière plus réaliste les agrosystèmes à l'échelle du paysage, comme un bassin versant par exemple, est d'importance cruciale que ce soit pour gérer la répartition des ressources en eau ou évaluer les interactions entre pratiques agricoles et évolution climatique. La télédétection à haute résolution spatiale et temporelle, à l'image de la mission spatiale Sentinel-2 de l'ESA, permet de fournir des informations sur la surface terrestre à des résolutions inégalées (10 m, 5 jours) et sur l'ensemble du globe. Cette thèse visait donc à exploiter ce type de données dans un modèle de surface, le modèle SURFEX-ISBA développé par le CNRM, afin d'améliorer la représentation des pratiques agricoles et évaluer son impact sur les flux hydrométéorologiques à l'échelle du paysage. Le premier volet de la thèse avait pour objectif de représenter l'hétérogénéité spatio-temporelle des cultures, du fait des choix des dates de semis et de récolte ainsi que des rotations de culture, dans le modèle. Pour ce faire, j'ai exploité les produits issus des données du satellite optique Formosat-2 (8m, acquisitions programmées), sous la forme de cartes d'occupation des sols et de cartes multi-temporelles d'indice de surface foliaire (LAI) afin de simuler un agrosystème du Sud-Ouest de la France sur une zone de 576 km2. Afin de simuler de telles étendues en exploitant la haute résolution des produits satellite tout en limitant le temps de calcul, une approche de simulation par parcelle a été mise en place. / Agricultural practices generate strong spatial and temporal heterogeneities of the vegetation in agrosystems. Land Surface Models (LSMs), which simulate water and energy fluxes between soil, vegetation and atmosphere, use coarse spatial resolutions and very simplified agricultural practices representations. Therefore, they cannot characterize such heterogeneities. However, simulating agrosystems in a realistic way is of great interest to manage water resources at landscape scale, like a river basin, or study the interactions between climate evolution and agriculture. High resolution remote sensing, like the ESA's Sentinel-2 space mission, allows monitoring the Earth surface globally with unprecedented spatio-temporal resolution of 10 meters and 5 days. This Ph. D. thesis aimed to exploit such data in the SURFEX-ISBA LSM, developed by the CNRM, to represent agricultural practices in the hydrometeorological fluxes estimation at landscape scale. The first part of the thesis aimed at representing the spatial and temporal heterogeneities of the vegetation due to the choice of sewing and harvesting dates and crop rotations in the model. I used multi-temporal Leaf Area Index and annual land cover maps derived from the Formosat-2 remote sensing date (8m, tasking acquisitions). Simulations were performed on a 576 km2 agricultural plain in southwestern France. In order to keep the interest of high resolution while saving computation time, a plot scale simulation approach was used.
452

Développement d'un modèle hydrologique de colonne représentant l'interaction nappe - végétation - atmosphère et applications à l'échelle du bassin versant / Development of a soil column model for simulating the water table - vegetation - atmosphere interaction and applications to the catchment scale

Maquin, Mathilde 30 September 2016 (has links)
Dans le cadre de la modélisation climatique, la représentation du cycle de l'eau des surfaces continentales est primordiale. Actuellement, les "modèles de surface continentale" représentent l'évolution des flux d'eau verticaux dans des colonnes de sol de quelques mètres de profondeur et leur interaction avec l'atmosphère. En revanche, l'interaction avec les nappes de faible profondeur n'est pas prise en compte alors que leur présence influence fortement les flux d'évapotranspiration à l'échelle locale, et, en conséquence, le climat à l'échelle régionale. Une difficulté est que les zones où cette interaction apparaît relèvent d'une échelle inférieure à celle du maillage des modèles de surface continentale. L'objectif de cette thèse est de proposer un modèle qui permette de prendre en compte l'impact des nappes de faible profondeur sur les flux d'évapotranspiration pour les modélisations climatiques à l'échelle globale. La contrainte principale associée relève des temps de calculs, qui doivent être réduits pour permettre la réalisation de simulations sur de grandes échelles de temps et d'espace. Dans ce cadre, un nouveau modèle de colonne de sol est proposé. Une fonction de drainage imposée en bas de colonne permet de reproduire l'évolution temporelle du toit de la nappe, en interaction avec les processus d'infiltration et d'évapotranspiration. Le modèle est testé et validé sur des cas tests académiques simples dans un premier temps, puis sur le cas d'un bassin versant réel dans un second temps (bassin versant du Strengbach, en France). Enfin, une méthodologie basée sur ce modèle de colonne et permettant d'estimer les flux d'évapotranspiration en tenant compte de leur variabilité dans l'espace est introduite. Elle est appliquée à un bassin versant dont la superficie est proche de celle d'une maille classique des modèles de surface continentale (bassin versant du Little Washita, aux États-Unis). / The representation of the water cycle on land surfaces is essential for climate modeling. Nowadays, the "Land Surface Models" (LSMs) represent soil columns of a few meters deep and they simulate the temporal evolution of the vertical water flows and the interaction with the atmosphere. However, the interaction with a near-surface water table is not taken into account although it strongly influences the evapotranspiration fluxes at the local scale, and therefore the climate at the regional scale. This interaction, which occurs at a smaller scale than the grid scale of the LSMs, is difficult to model. The objective of this PhD is to propose a model that incorporates the impact of a near-surface water table on evapotranspiration fluxes for global climate models. The computation time of the model must be small enough to enable simulations at large spatial and temporal scales. In this context, a new soil column model is proposed with a drainage function that is imposed at the bottom of the column. This function aims at reproducing the temporal evolution of the water table level in interaction with both the infiltration and the evapotranspiration fluxes. The model is tested and validated on numerical experiments and on a real catchment (Strengbach, France). A methodology based on this column model is introduced to estimate the evapotranspiration fluxes taking into account their subgrid variability. This methodology is applied to a catchment whose area is similar to the one of a classic grid cell of LSMs (Little Washita, USA).
453

CLIMATE, LAND COVER CHANGE AND THE SEASONALITY OF PHOTOSYNTHETIC ACTIVITY AND EVAPOTRANSPIRATION IN TROPICAL ECOSYSTEMS

Maria Del Rosario Uribe Diosa (9183308) 30 July 2020 (has links)
<p>Tropical ecosystems play a key role in regulating the global climate and the carbon cycle thanks to the large amounts of water and carbon exchanged with the atmosphere. These biogeochemical fluxes are largely the result of high photosynthetic rates. Photosynthetic activity is highly dependent on climate and vegetation, and therefore can be easily modified along with changes in those two factors. A better understanding of what drives or alters photosynthetic activity in the tropics will lead to more accurate predictions of climate and subsequent effects on ecosystems. The seasonal pattern of photosynthetic activity is one of the main uncertainties that we still have about tropical ecosystems. However, this seasonality of tropical vegetation and its relationship to climate change and land cover is key to understanding how these ecosystems could be affected and have an effect on climate.</p><p>In this dissertation, I present three projects to improve our understanding about tropical ecosystems and how their photosynthetic activity is affected by climate and land cover change. The lack of field-based data has been one of the main limiting factors in our study of tropical ecosystems. Therefore, in these projects I extensively use remote sensing-derived data to analyze large scale and long term patterns. In the first study, I looked at the seasonal relationship between photosynthetic activity and climate, and how model simulations represent it. Vegetation in most of the tropics is either positively correlated with both water and light, or positively correlated with one of them and negatively with the other. Ecosystem models largely underestimate positive correlations with light and overestimate positive correlations with water. In the second study, I focus on the effect of land cover change in photosynthetic activity and transpiration in a highly deforested region in the Amazon. I find that land cover change decreases tropical forests photosynthetic activity and transpiration during the dry season. Also, land cover change increases the range of photosynthetic activity and transpiration in forests and shrublands. These effects are intensified with increasing land cover change. In the last project, I quantify the amount of change in evapotranspiration due to land cover change in the entire Amazon basin. Our remote sensing-derived estimates are well aligned with model predictions published in the past three decades. These results increase our confidence in climate models representation of evapotranspiration in the Amazon.</p><p>Findings from this dissertation highlight (1) the importance of the close relationship between climate and photosynthetic activity and (2) how land cover change is altering that relationship. We hope our results can build on our knowledge about tropical ecosystems and how they could change in the future. We also expect our analysis to be used for model benchmarking and tropical ecosystem monitoring.</p>
454

Langjähriger Wasserhaushalt von Gras- und Waldbeständen : Entwicklung, Kalibrierung und Anwendung des Modells LYFE am Groß-Lysimeter St. Arnold / Long-term water balance analysis of grass and tree stands : Development, calibration and application of the modell LYFE at St. Arnold large lysimeter

Klein, Markus 04 September 2000 (has links)
Die Bewirtschaftung der knappen Ressource sauberen Wassers setzt das Verständnis der Wasserhaushaltsprozesse voraus. Mit prozessorientierten Modellen können Wasserbilanzen für unterschiedliche Standortbedingungen berechnet werden, wenn die Modelle zuvor an repräsentativen Zeitreihen, die die notwendige hydrologische Information enthalten, kalibriert und die Sensitivität ihrer Parameter analysiert wurden. Am Groß-Lysimeter St. Arnold (Westfalen) werden seit 1966 neben den meteorologischen Parametern tägliche Sickerwasserraten gemessen, die für diesen Zweck hervorragend geeignet sind, weil sie integrale Bilanzgrößen über die je 400m² x 3,50m großen Podsol-Bodenkörper und ihre Vegetationsbestände darstellen. Auf den drei Lysimetern wachsen Gras, ein Eichen-/Buchen- bzw. ein Kiefernbestand. Für die Untersuchung der Wasserhaushaltsprozesse wird das "LYsimeter outFlow and Evapotranspiration model" LYFE, entwickelt. Es verknüpft die Richards-Gleichung mit einem Interzeptionsmodell, das den Niederschlag in Infiltration, Blatt- und Streuinterzeption aufspaltet. Die Evapotranspirations-(ET)-Raten werden alternativ mit der Penman- oder Monteith-Formel berechnet. Die Simulationen vollziehen die gemessenen täglichen Sickerwasserraten aller drei Lysimeter unter den Klimavariabilitäten des gesamten Zeitraums von 34 Jahren nach. Am Graslysimeter ist die Sensitivität der ET-Parameter gering, so dass unterschiedlich aufwendige Methoden zur Bestimmung der bodenhydraulischen Parameter verglichen und bewertet werden können: die statischen Stechzylindermessungen der Retention und gesättigten Leitfähigkeit, der Verdunstungsversuch und verschiedene Pedotransferfunktionen (PTF). Die Simulation mit den Parametern des Verdunstungsversuchs ergeben eine gute Übereinstimmung mit den gemessenen Sickerwasserraten, während die Parameter der statischen Messungen durch die inverse Modellierung mindestens eines Parameters angepasst werden müssen. Von den PTF erzielen die kontinuierliche und die Klassen-PTF von Wösten die besten Übereinstimmungen. Der Wasserhaushalt der Baumbestände wird von der Interzeption dominiert. Dies gilt insbesondere für die Interzeptionsverdunstung im Winterhalbjahr, die die Unterschiedlichkeit der Wasserbilanz von Laub- und Nadelbaumbeständen verursacht. Wenn die ET mit der Penman-Formel berechnet wird, können die Raten der Evaporation und Transpiration nur schlecht abgeschätzt werden und steigen nicht mit dem Wachstum der Bestände. Durch die Verwendung der Monteith-Formel werden diese Probleme behoben. Darüberhinaus zeigt das Modell die unterschiedliche Wirkung von Transpiration und Interzeptionsverdunstung auf den Jahresgang der Sickerwasserraten und ermöglicht so die Angabe ihrer jeweiligen Beiträge zum Wasserhaushalt. Mit dem kalibrierten Modell können die lysimetrischen Messungen auf andere Standorte übertragen werden, um die langfristige Wasserbilanz zeitlich hochaufgelöst zu bestimmen. Daher kann LYFE im Rahmen regionaler Wasserhaushaltsuntersuchungen eingesetzt werden.
455

RESOLVING THE ROLE OF SUBARCTIC VEGETATION ON MOUNTAIN WATER CYCLING IN A RAPIDLY CHANGING CLIMATE

Nicholls, Erin January 2023 (has links)
High latitude and altitude ecosystems are currently undergoing rapid and unprecedented warming in response to anthropogenically induced climate change. Subarctic, alpine regions are particularly vulnerable to increases in air temperature and changing precipitation regimes, which have caused cascading hydrological and ecological impacts. In addition to changing flow regimes, thawing permafrost, and declining glaciers, widespread changes in vegetation composition, density and distribution have been observed across northern regions. Specifically, treeline is advancing with increasing latitude and altitude and shrubs are increasing in height, extent, and density. Despite widespread documentation of this northern greening, few field-based studies have evaluated the hydrological implications of these changes. Quantification of total evapotranspiration (ET) across a range of vegetation gradients is essential for predicting water yield, yet challenging in cold alpine catchments due to heterogeneous land cover. Direct field-level measurements of transpiration (T) and evaporative partitioning across subarctic, alpine ecosystems and species are rare, yet essential to assess sensitivities and hydrological response to changing climate drivers. This thesis presents six years of surface energy balance components and ET dynamics and two years of sap flux measurements and critical zone stable water isotope sampling at three sites along an elevational gradient in a subarctic, alpine catchment near Whitehorse, Yukon Territory, Canada. These sites span a gradient of thermal and vegetation regimes, providing a space-for-time comparison for future ecosystem shifts: 1) a low-elevation boreal white spruce forest (~12-20 m), 2) a mid-elevation subalpine taiga comprised of tall, dense willow (Salix) and birch (Betula) shrubs (~1-3 m) and 3) a high-elevation subalpine taiga with short, sparse shrub cover (< 0.75 m) and moss, lichen, and bare rock. We utilize both mass flux measurements and stable water isotopes to evaluate the timing, magnitude, sensitivities, and sources of plant water uptake across these vegetation covers. Total ET decreased and interannual variability increased with elevation, with mean May to September ET totals of 349 (±3) mm at the forest, 249 (±10) mm at the tall, dense shrub site, and 240 (± 26) mm at the short, sparse shrub site. The shrub sites exhibited similar ET losses over 6 years despite differences in shrub height and abundance, although daily rates were higher at the tall shrub site in the peak growing season. From May to September, ET:R ratios were the highest and most variable at the forest (2.19 ± 0.37) and similar at the tall, dense shrub (1.22 ± 0.09) and short, sparse shrub (1.14 ± 0.05) sites. In the mid-growing season, mean T rates were greater at the dense shrub site (2.0 ± 0.75 mm d-1) than the forest (1.47 ± 0.52 mm d-1). During this time, T:ET was lower at the forest (0.48) than at the tall, dense shrub site (0.80). During the growing season between the two years, 2020 was considerably wetter and cooler than 2019. At the tall shrub site, during the mid-growing season (July 1-Aug 15), T dropped considerably in 2020 (-26%), as T was suppressed during the short, wet growing season. In contrast, T at the forest was only moderately suppressed (-3%) between years in this same period. Evapotranspiration was more strongly controlled by air temperature during the early and late season at the forest, while ET at the shrub site was more sensitive to warmer temperatures in the mid-growing season. At the shrub sites, ET was energy limited with no observed soil moisture limitation on T. While 2H and 18O of volume weighted precipitation became more depleted with elevation, the opposite was true in xylem water, where 2H and 18O became more enriched with elevation. Plant water uptake was more reflective of snow water at the forest site than both shrub sites, particularly early in the year and during dry periods. Near-surface bulk soil water had more negative lc-excess at the forest throughout the season and with depth, highlighting increased contributions from soil evaporation. This study combined direct measurements of sap flux, ET, and critical zone isotopes to provide new details on multi-year plant-soil-water dynamics, critical zone water cycling, and species-specific plant water uptake patterns in seasonally frozen soils, which have not previously been reported in cold regions. Our results suggest that advances in treeline will increase overall ET and lower interannual variability; however, the large growing season water deficit and stable water isotope signature at the forest indicates strong reliance on soil moisture from late fall and snowmelt recharge and the potential for plant water stress. Differences between the shrub species were apparent in the sap flux and stable isotope measurements, highlighting the need to further evaluate species specific responses and feedbacks when predicting hydrological fluxes across subarctic ecosystems. Overall, our results suggest that predicted changes in vegetation type and structure in northern regions will have a considerable impact on water partitioning and will vary in a complex way in response to changing precipitation timing, phase and magnitude. / Thesis / Candidate in Philosophy
456

Stormwater Irrigation Of Saint Augustine Grass: Nitrogen Balance And Evapotranspiration

Hulstein, Ewoud 01 January 2005 (has links)
A change in surface condition of a watershed, which is usually caused by development, can have measured effects on the naturally occurring hydrologic cycle and nitrogen cycle. This could result in environmental problems, such as reduced springflow and eutrophication. In an effort to address these issues, a combination of best management practices (BMPs) can be adhered to. The practice of using excess stormwater as a source for irrigation is proposed as a BMP for the minimization of impacts by development to the hydrologic and nitrogen cycles. To study the proposed BMP, a field experiment was installed in an outdoor location on the UCF main campus in Orlando, Florida. The experiment consists of three soil chambers, (2x2x4 ft, L:W:H), filled with compacted soil and covered with St. Augustine grass to simulate a suburban lawn. The grass was irrigated up to twice a week with detained stormwater with a nitrate nitrogen concentration of up to 2 mg/L. A mass balance and a total nitrogen balance were performed to determine evapotranspiration (ET) and impacts on groundwater nitrogen content. It was determined that the groundwater characteristics are largely dependent on the characteristics of the soil. The input nitrogen (precipitation and irrigation) was mostly in the form of nitrate and the output nitrogen (groundwater) was mostly in the form of ammonia. A total nitrogen mass balance indicated the mass output of nitrogen was significantly larger than mass input of nitrogen, which was due to ammonia leaching from the soil. Only small concentrations of nitrate were detected in the groundwater, resulting in an estimated nitrate removal (conversion to ammonia) of 97 percent at a depth of four feet when the input nitrate concentration was 2 mg/L. The average ET of the three chambers was compared to the estimated ET from the modified Blaney-Criddle equation on a monthly basis and a yearly basis. The modified Blaney-Criddle equation was proven to be accurate for estimating the actual ET for this application: irrigated St. Augustine grass in the Central Florida climate. In conclusion, using the available literature and the data collected from the field experiment, it was shown through an example design problem that the proposed BMP of using excess stormwater as a source for irrigation can help achieve a pre- versus postdevelopment volume balance and can help control post-development nitrate emissions.
457

Evaluation Of Climatic And Ecohydrological Effects On Longwave Radiation And Evapotranspiration

Rizou, Maria 01 January 2008 (has links)
Modern tools, nontraditional datasets and a better understanding of the interaction between climate and ecohydrology are continuously being developed as today's society is in critical need for improving water management, predicting hydrometeorological hazards and forecasting future climate. In particular, the study of the intra- and inter-annual variations in grass productivity and evapotranspiration caused by variations in precipitation/soil moisture and other biophysical factors is of great significance due to their relation to future climatic changes. The research presented here falls in three parts. In the first part of the dissertation, a land use adaptable model, based on the superposition of the temperature and water vapor pressure effects, is proposed for the effective clear sky emissivity. Ground radiometer and meteorological data, applicable in the subtropical climate of Saint Johns River Water Management District, Florida, were utilized for the model development over the spring season of 2004. The performance of this model was systematically evaluated by pertinent comparisons with previously established models using data over various land covers. The second part of the thesis investigates the dynamics of evapotranspiration with respect to its significant environmental and biological controls over an unmanaged bahia grassland. Eddy correlation measurements were carried out at a flux tower in Central Florida over the annual course of 2004. The main focus was on the sensitivity of the water vapor flux to wetness variables, namely the volumetric soil water content and the current precipitation index. It was shown that the time scales involved with the dynamics of evapotranspiration were on the order of six days, suggesting that depletion of the soil moisture was mostly responsible for the temporal fluctuations in evapotranspiration. Finally, simple models for the Priestley-Taylor factor were employed in terms of water availability, and the modeled results closely matched the eddy covariance flux values on daily time scale during all moisture conditions. In the third part of this work, the partitioning between latent and sensible heat fluxes was systematically examined with respect to biophysical factors. It was found that the seasonal variations in leaf area index, soil water content and net radiation were reflected in a strong seasonal pattern of the energy balance. Calculations of the bulk parameters, namely Priestley-Taylor parameter and decoupling coefficient, indicated that evapotranspiration of this grassland was controlled by water supply limitations and surface conductance. At an annual basis, the cumulative evapotranspiration was 59 percent of the precipitation received at the site. The results of this research complemented with other studies will promote better understanding of land-atmosphere interactions, accurate parameterizations of hydroclimatic models, and assessment of climate impact of grassland ecosystems.
458

Estimation of aboveground terrestrial net primary productivity and analysis of its spatial and temporal trends in the conterminous United States from 1997 to 2007 using NASA-CASA model

Khanal, Sami 01 May 2010 (has links)
This study estimated monthly and annual Net Primary Productivity (NPP), an important indicator of carbon sequestration, in the Conterminous US from 1997 to 2007 using Carnegie-Ames-Stanford Approach. Vegetation condition, temperature, precipitation, photosynthetically active radiation and soil water holding capacity were used as model’s inputs. NPP values were lower than mean annual values during the year 2000 to 2003 which was probably due to extreme drought conditions during these years. Higher NPP per square meter was generally found in Savannah and Subtropical eco-divisions whereas Tropical/Subtropical deserts had the lowest NPP. Southeastern states had the highest NPP per square meter thus, made the highest contribution to the terrestrial carbon sequestration in US. Since the vegetation is one of the main factors in NPP and thus carbon sequestration, the results of this study could help in various environmental policy decisions on forest and cropland management at the state, EPA and federal levels.
459

Water Requirements, Use Efficiency, and Insect Infestation in Brussels Sprouts, and Nitrogen Use Efficiency in Sweet Basil under Low Tunnels compared to Open-field Production

Acharya, Tej Prasad 04 January 2019 (has links)
Sustainable vegetable production is one of the most active areas of vegetable research and of concern to all producers. Everyone, both producers and consumers, are concerned with sustainability. Brussels sprouts and sweet basil are high value commodities, but increasing global concerns about water availability, insect-pest problems, and costly fertilizer inputs severely impact the growth and production of these crops. Low tunnels covered with spun-bonded fabric can improve production of vegetables and herbs in Virginia and the U.S. This study investigated the performance of Brussels sprouts and basil grown under low tunnels (LTs), and their relationship with water use efficiency, nitrogen use efficiency, and the level of protection against insect injury. Low tunnels increased yield, number of sprouts, and water use efficiency of Brussels sprout production. In addition, LTs decreased irrigation requirements, irrigation events, leaf feeding injury, and insect populations in comparison to open field. Similarly, LTs increased summer production of sweet basil as measured by fresh weight and biomass. In addition, plant N uptake was greater under the LTs; however, the increase in nitrogen use efficiency was inconsistent. / Master of Science in Life Sciences / Brussels sprouts and sweet basil are economically important cash crops on the East Coast. Brussels sprouts is a Cole crop and an important source of dietary fiber, vitamins (A, C & K), calcium, iron, manganese and antioxidants. Similarly, sweet basil is a member of the mint family and important high-value herb in the U.S. and the world. It is mainly grown for culinary purposes as a dried and fresh spice in the U.S. However, demand for these commodities is increasing. Low tunnels (LTs) covered with spunbonded fabric can be a practical management tool to increase yield. Results from this study indicate that LTs increase yield of Brussels sprouts and basil, water use efficiency and total nitrogen uptake, while reducing insect pest infestation. Therefore, LTs can be a useful tool to improve sustainability of Brussels sprouts and basil production.
460

Balancing the Water Budget: the effect of plant functional type on infiltration to harvest ratios in stormwater bioretention cells

Krauss, Lauren Marie 19 January 2021 (has links)
Stormwater bioretention cells (BRCs) are a variety of green stormwater infrastructure with the potential to restore pre-urban water balance, provided they can be tailored to infiltrate and evapotranspire (i.e., harvest) urban runoff in proportions consistent with pre-urban hydrologic conditions. This paper evaluates their capacity to do so, focusing on evapotranspirative harvest, which is relatively understudied, and the capacity of CSR (Competitve, Stress-tolerant, and Ruderal) functional type to serve as an overarching framework characterizing the water use strategy of BRC plants. The goal is to determine if harvest (and therefore the ratio of urban runoff infiltrated to harvested; the I:H ratio) might be fine-tuned to meet pre-urban values in BRCs through informed manipulation of plant community composition. This study focuses on 3 critical plant water use traits, the turgor loss point, the point of incipient water stress, and maximum stomatal conductance. A global plant traits meta-analysis identified degree of plant competitiveness and stress tolerance as significant determinants of all three water use traits, with stem type (woody vs herbaceous) also being significant, but only for turgor loss point. Based on these results, six water use scenarios appropriate for plants with different CSR type/stem type combinations were developed. BRC plants spanning the range of CSR types necessary to actionize these scenarios were determined to be available in eight major climate zones of the coterminous US, suggesting that regulating plant water use in BRCs using CSR is likely feasible. Hydraulic simulations (Hydrus 1D) were conducted for each scenario in all eight climate zones and revealed significant differences in evapotranspirative harvest and I:H ratios in simulated BRCs. Competitive woody plants had the highest evapotranspiration and lowest I:H ratios; 1.5-1.8 times more evapotranspiration and a 1.6-2 times lower I:H ratio than stress tolerant herbaceous plants, on average, across climate zones. Despite these significant differences, no simulated BRC in any climate zone was capable of reproducing pre-urban I:H ratios, regardless of plant type. More water was infiltrated than harvested in all scenarios and climates with the inverse being true for all pre-urban conditions. This suggests that absent additional sources of harvest (e.g., use of BRC water for nonpotable purposes such as toilet flushing and outdoor irrigation, or adoption of novel BRC designs that promote lateral exfiltration, stimulating "extra" evapotranspiration from nearby landscapes), BRCs will be unable to restore pre-urban water balance on their own. If true, then using BRCs in combination with other green technologies (particularly those biased towards harvest), may be the best path forward for balancing urban water budgets. / Master of Science / Stormwater bioretention cells (BRCs) are a variety of green infrastructure designed to manage urban stormwater flows that can dramatically reduce the amount of stormwater that is rapidly (and unnaturally) conveyed from paved surfaces to ecosystems. Their ability to recreate natural flow conditions is dependent on them balancing rates of infiltration – slowly filtering water down to the water table – and evapotranspiration – letting plants capture and transpire water. This paper evaluates the extent to which different plant functional types (competitive, stress tolerant, and ruderal (weedy)) can be used to regulate this balance, bringing urban hydrologic conditions closer to pre-urban ones. Competitiveness and stress tolerance were found to significantly influence plant water use traits, as was plant stem type (woody vs herbaceous) to a lesser extent (i.e., managing water budgets using CSR functional type is theoretically possible). Published BRC vegetation guidelines in 8 major US climate zones were found to include both competitive and stress tolerant species (i.e., the range of functional types required to regulate BRC water balance exists, suggesting it is feasible). Finally, hydraulic simulations conducted under six plant water use scenarios (reflecting different CSR types and stem types) revealed significant differences in the ratio of water infiltrated to evapotranspired by BRCs (i.e., changing plant functional types can meaningfully influence BRC water balance). This said, the magnitude of this effect may be insufficient to return urban catchments to a pre-urban state. All BRCs infiltrated too much water in our simulations suggesting that absent additional sources of harvest (for instance., use of BRC water for nonpotable purposes such as toilet flushing or outdoor irrigation), BRCs will be unable to restore pre-urban water balance on their own. If true, then using BRCs in combination with other green technologies (particularly those biased towards harvest), may be the best path forward for balancing urban water budgets.

Page generated in 0.1359 seconds