• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Event-by-event Hydrodynamics for LHC / Hidrodinâmica Evento-por-evento para o LHC

Machado, Meera Vieira 06 August 2015 (has links)
We perform an event-by-event hydrodynamic analysis for Pb-Pb collisions at the incident energy of sqrt(sNN) = 2.76TeV, also studying the effects of two equations of state under the same initial conditions and freeze-out scenario: one characterized by a critical point and the other based on Lattice QCD (Quantum Chromodynamics) calculations. The observables of interest are particle spectra in terms of pseudorapidity and transverse momentum, as well as flow harmonics, which are coefficients that carry information on the initial anisotropies of the system throughout its evolution. Those are computed and compared with experimental Large Hadron Collider (LHC) data. There are slight differences in the results for each equation of state, caused by their distinct features. Lastly, the LHC-based calculations are compared with previous works related to the Relativistic Heavy-Ion Collider (RHIC) experimental data. The main techniques of the latter are performed in this work, which results in differences between some aspects in the outcome for each collision type, from initial energy distributions to freeze-out temperatures. / É feita uma análise de hidrodinâmica evento-por-evento para colisões de Pb-Pb à energia incidente de sqrt(sNN) = 2.76TeV. Estudamos os efeitos de duas equações de estado sob as mesmas condições iniciais e desacoplamento: uma é caracterizada por um ponto crítico e a outra é baseada em cálculos de Lattice QCD (Cromodinâmica Quântica). Os observáveis de interesse são os espectros de partículas em termos da pseudo rapidez e momento transversal, assim como os coeficientes harmônicos de Fourier que, por sua vez, carregam as anisotropias iniciais do sistema durante toda a sua evolução. Tais observáveis são calculados e comparados com dados experimentais do Large Hadron Collider (LHC). Por fim, os cálculos baseados em parâmetros referentes às energias do LHC são comparados com trabalhos anteriores feitos com base em dados experimentais do Relativistic Heavy-Ion Collider (RHIC). Os principais métodos usados no caso anterior são aplicados a este trabalho, o que resulta em algumas diferenças entre os resultados dos dois tipos de colisão, desde a distribuição de energia inicial a temperaturas de freeze-out.
2

Event-by-event Hydrodynamics for LHC / Hidrodinâmica Evento-por-evento para o LHC

Meera Vieira Machado 06 August 2015 (has links)
We perform an event-by-event hydrodynamic analysis for Pb-Pb collisions at the incident energy of sqrt(sNN) = 2.76TeV, also studying the effects of two equations of state under the same initial conditions and freeze-out scenario: one characterized by a critical point and the other based on Lattice QCD (Quantum Chromodynamics) calculations. The observables of interest are particle spectra in terms of pseudorapidity and transverse momentum, as well as flow harmonics, which are coefficients that carry information on the initial anisotropies of the system throughout its evolution. Those are computed and compared with experimental Large Hadron Collider (LHC) data. There are slight differences in the results for each equation of state, caused by their distinct features. Lastly, the LHC-based calculations are compared with previous works related to the Relativistic Heavy-Ion Collider (RHIC) experimental data. The main techniques of the latter are performed in this work, which results in differences between some aspects in the outcome for each collision type, from initial energy distributions to freeze-out temperatures. / É feita uma análise de hidrodinâmica evento-por-evento para colisões de Pb-Pb à energia incidente de sqrt(sNN) = 2.76TeV. Estudamos os efeitos de duas equações de estado sob as mesmas condições iniciais e desacoplamento: uma é caracterizada por um ponto crítico e a outra é baseada em cálculos de Lattice QCD (Cromodinâmica Quântica). Os observáveis de interesse são os espectros de partículas em termos da pseudo rapidez e momento transversal, assim como os coeficientes harmônicos de Fourier que, por sua vez, carregam as anisotropias iniciais do sistema durante toda a sua evolução. Tais observáveis são calculados e comparados com dados experimentais do Large Hadron Collider (LHC). Por fim, os cálculos baseados em parâmetros referentes às energias do LHC são comparados com trabalhos anteriores feitos com base em dados experimentais do Relativistic Heavy-Ion Collider (RHIC). Os principais métodos usados no caso anterior são aplicados a este trabalho, o que resulta em algumas diferenças entre os resultados dos dois tipos de colisão, desde a distribuição de energia inicial a temperaturas de freeze-out.
3

Secondary ion emission from

Rickman, Richard Dale 30 September 2004 (has links)
Some collision cascades, induced by keV polyatomic projectiles, result in the emission of multiple secondary ions. Such co-emissions imply that the ejecta originate from molecules co-located within the nano-volume perturbed by a single projectile impact. The relevance for the chemical analysis of nano-domains depends on the effectiveness of the projectile to cause co-emission of two or more secondary ions. This research examines how projectile characteristics, i.e. the energy and number of constituent atoms in the projectile, influence multiple secondary ion emission, or "superefficient" events. In addition we examine the relevance of this technique for nanostructure investigation. Yields have been measured for multi-ion emission events as a function of projectile characteristics. The data show that some collision cascades are "superefficient". For example, in a four-ion emission event, the yield for the phenylalanine quasi-molecular ion is two orders of magnitude larger from Au4+ impacts than from equal velocity Au+ projectiles. Yields for the co-emission of two phenylalanine quasi-molecular ions from "super-efficient" events have been measured. This case is particularly productive in that the detection of two analytically significant ions is recorded from a single event. Large increases (one to two orders of magnitude) in co-emitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the co-emission of two Ph ions, their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles. Finally, we use this methodology to investigate surface structural effects on the occurrence of "super-efficient" events. The results indicate that it is possible to distinguish between two phases of a chemical compound although the stoichiometry remains the same. These results confirm previous predictions concerning the chemical nature of these "super-efficient" events. Also shown is that they are sensitive to the surface nanoenvironment. This approach extends the technology of Secondary Ion Mass Spectrometry by providing a methodology for probing surface nano-domains at the sub100 nm level.
4

Characterization and Quantification of Biological Surfaces Using Cluster ToF-SIMS with the Event-By-Event Bombardment/Detection Mode

Chen, Li-Jung 2012 May 1900 (has links)
Cluster ToF-SIMS (time-of-flight secondary ion mass spectrometry) operated in the event-by-event bombardment/detection mode has been applied to: 1) evaluate and screen the manufacturing quality of step-wise prepared micropatterned biointerfaces; 2) quantify the binding density of Au nanoparticles (AuNPs)-antiCD4 conjugates selectively attached on the cell surface; 3) elucidate the biological interaction of proteins and molecules by quantifying the fractional coverage of immobilized biomolecules; 4) enhance the accuracy of secondary ion identification of specific molecules. Briefly, our method consists of recording the secondary ions, SIs, individually emitted from a single projectile impact (C60 1,2+, Au400 +4). From the set of individual mass data, we select events where a specific SI was detected. The selected records reveal the SIs co-ejected from the nanovolume impacted by an individual cluster projectile from an emission area of 10-20 nm in diameter and an emission depth of 5-10 nm. The approach for quantifying the number of AuNPs or that of specific nanodomains is via the concept of the fractional coverage. The latter is the ratio of the effective number of projectile impacts on a specified sampling area (Ne) to the total number of impacts (No). The methodology has been validated with the determination of the number of antibody-AuNP conjugates on a cell, i.e. the number of disease related antigens on a cell via their specific binding sites with the AuNP-labeled antibodies. The number of AuNP-antibodies measured, ~42000 per cell, is in good agreement with literature results. The fractional coverage concept was also used to quantify several variants of biointerfaces. An example is the quantification of biotin and avidin immobilization as a function of the composition of silane substrates. The data collected in the event-by-event bombardment/detection mode expands the scope and quality of analytical information. One can identify SIs co-emitted with two specified SIs (double coincidence mass spectrometry) to inspect a specific stratum of a biointerface. A further refinement is the selection of events meeting a double coincidence emission condition. This mode enables the identification of nano-object of a few nm in size, which eliminates (anticoincidence) interferences from substrates.
5

Nano-Domain Analysis Via Massive Cluster Secondary Ion Mass Spectrometry in the Event-by-Event Mode

Pinnick, Veronica Tiffany 2009 December 1900 (has links)
Secondary ion mass spectrometry (SIMS) is a surface analysis technique which characterizes species sputtered by an energetic particle beam. Bombardment with cluster projectiles offers the following notable advantages over bombardment with atomic ions or small clusters: enhanced emission of molecular ions, low damage cross-section, and reduced molecular fragmentation. Additionally, in the case of Au4004 and C60 impacts, desorption originates from nanometric volumes. These features make clusters useful probes to obtain molecular information from both nano-objects and nano-domains. The "event-by-event bombardment/detection mode" probes nano-objects one-at-a-time, while collecting and storing the corresponding secondary ion (SI) information. Presented here are the first experiments where free-standing nano-objects were bombarded with keV projectiles of atomic to nanoparticle size. The objects are aluminum nano-whiskers, 2 nm in diameter and ~250 nm in length. Au4004 has a diameter of ~2 nm, comparable to the nominal diameter of the nanowhiskers. There are notable differences in the SI response from sample volumes too small for full projectile energy deposition. The whisker spectra are dominated by small clusters?the most abundant species being AlO- and AlO2-. Bulk samples have larger yields for AlO2- than for AlO-, while this trend is reversed in whisker samples. Bulk samples give similar abundances of large SI clusters, while whisker samples give an order of magnitude lower yield of these SIs. Effective yields were calculated in order to determine quantitative differences between the nano-objects and bulk samples. The characterization of individual nano-objects from a mixture is demonstrated with negatively charged polymer spheres that are attracted to and retained by the nano-whiskers. The spheres are monodisperse polystyrene nanoparticles (30nm diameter). Our results show that the event-by-event mode can provide information on the nature, size, relative location, and abundance of nano-objects in the field of view. This study presents the first evidence of quantitative molecular information originating from nano-object mixtures. Biologically relevant systems (solid-supported lipid bilayers) were also characterized using Au5 , Au4004 and C60 . Organization-dependent SI emission was observed for phosphocholine bilayers. Lipid domain formation was also investigated in bilayers formed from cholesterol and a mixed lipid system. Trends in the correlation coefficient suggest that cholesterol segregates from the surrounding lipid environment during raft formation.
6

Secondary ion emission from “super-efficient” events: prospects for surface mass spectrometry

Rickman, Richard Dale 30 September 2004 (has links)
Some collision cascades, induced by keV polyatomic projectiles, result in the emission of multiple secondary ions. Such co-emissions imply that the ejecta originate from molecules co-located within the nano-volume perturbed by a single projectile impact. The relevance for the chemical analysis of nano-domains depends on the effectiveness of the projectile to cause co-emission of two or more secondary ions. This research examines how projectile characteristics, i.e. the energy and number of constituent atoms in the projectile, influence multiple secondary ion emission, or "superefficient" events. In addition we examine the relevance of this technique for nanostructure investigation. Yields have been measured for multi-ion emission events as a function of projectile characteristics. The data show that some collision cascades are "superefficient". For example, in a four-ion emission event, the yield for the phenylalanine quasi-molecular ion is two orders of magnitude larger from Au4+ impacts than from equal velocity Au+ projectiles. Yields for the co-emission of two phenylalanine quasi-molecular ions from "super-efficient" events have been measured. This case is particularly productive in that the detection of two analytically significant ions is recorded from a single event. Large increases (one to two orders of magnitude) in co-emitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the co-emission of two Ph ions, their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles. Finally, we use this methodology to investigate surface structural effects on the occurrence of "super-efficient" events. The results indicate that it is possible to distinguish between two phases of a chemical compound although the stoichiometry remains the same. These results confirm previous predictions concerning the chemical nature of these "super-efficient" events. Also shown is that they are sensitive to the surface nanoenvironment. This approach extends the technology of Secondary Ion Mass Spectrometry by providing a methodology for probing surface nano-domains at the sub100 nm level.
7

The standard model for relativistic heavy-ion collisions and electromagnetic tomography

Shen, Chun 15 October 2014 (has links)
No description available.
8

Event-Driven Motion Compensation in Positron Emission Tomography: Development of a Clinically Applicable Method

Langner, Jens 11 August 2009 (has links) (PDF)
Positron emission tomography (PET) is a well-established functional imaging method used in nuclear medicine. It allows for retrieving information about biochemical and physiological processes in vivo. The currently possible spatial resolution of PET is about 5 mm for brain acquisitions and about 8 mm for whole-body acquisitions, while recent improvements in image reconstruction point to a resolution of 2 mm in the near future. Typical acquisition times range from minutes to hours due to the low signal-to-noise ratio of the measuring principle, as well as due to the monitoring of the metabolism of the patient over a certain time. Therefore, patient motion increasingly limits the possible spatial resolution of PET. In addition, patient immobilisations are only of limited benefit in this context. Thus, patient motion leads to a relevant resolution degradation and incorrect quantification of metabolic parameters. The present work describes the utilisation of a novel motion compensation method for clinical brain PET acquisitions. By using an external motion tracking system, information about the head motion of a patient is continuously acquired during a PET acquisition. Based on the motion information, a newly developed event-based motion compensation algorithm performs spatial transformations of all registered coincidence events, thus utilising the raw data of a PET system - the so-called `list-mode´ data. For routine acquisition of this raw data, methods have been developed which allow for the first time to acquire list-mode data from an ECAT Exact HR+ PET scanner within an acceptable time frame. Furthermore, methods for acquiring the patient motion in clinical routine and methods for an automatic analysis of the registered motion have been developed. For the clinical integration of the aforementioned motion compensation approach, the development of additional methods (e.g. graphical user interfaces) was also part of this work. After development, optimisation and integration of the event-based motion compensation in clinical use, analyses with example data sets have been performed. Noticeable changes could be demonstrated by analysis of the qualitative and quantitative effects after the motion compensation. From a qualitative point of view, image artefacts have been eliminated, while quantitatively, the results of a tracer kinetics analysis of a FDOPA acquisition showed relevant changes in the R0k3 rates of an irreversible reference tissue two compartment model. Thus, it could be shown that an integration of a motion compensation method which is based on the utilisation of the raw data of a PET scanner, as well as the use of an external motion tracking system, is not only reasonable and possible for clinical use, but also shows relevant qualitative and quantitative improvement in PET imaging. / Die Positronen-Emissions-Tomographie (PET) ist ein in der Nuklearmedizin etabliertes funktionelles Schnittbildverfahren, das es erlaubt Informationen über biochemische und physiologische Prozesse in vivo zu erhalten. Die derzeit erreichbare räumliche Auflösung des Verfahrens beträgt etwa 5 mm für Hirnaufnahmen und etwa 8 mm für Ganzkörperaufnahmen, wobei erste verbesserte Bildrekonstruktionsverfahren eine Machbarkeit von 2 mm Auflösung in Zukunft möglich erscheinen lassen. Durch das geringe Signal/Rausch-Verhältnis des Messverfahrens, aber auch durch die Tatsache, dass der Stoffwechsel des Patienten über einen längeren Zeitraum betrachtet wird, betragen typische PET-Aufnahmezeiten mehrere Minuten bis Stunden. Dies hat zur Folge, dass Patientenbewegungen zunehmend die erreichbare räumliche Auflösung dieses Schnittbildverfahrens limitieren. Eine Immobilisierung des Patienten zur Reduzierung dieser Effekte ist hierbei nur bedingt hilfreich. Es kommt daher zu einer relevanten Auflösungsverschlechterung sowie zu einer Verfälschung der quantifizierten Stoffwechselparameter. Die vorliegende Arbeit beschreibt die Nutzbarmachung eines neuartigen Bewegungskorrekturverfahrens für klinische PET-Hirnaufnahmen. Mittels eines externen Bewegungsverfolgungssystems wird während einer PET-Untersuchung kontinuierlich die Kopfbewegung des Patienten registriert. Anhand dieser Bewegungsdaten führt ein neu entwickelter event-basierter Bewegungskorrekturalgorithmus eine räumliche Korrektur aller registrierten Koinzidenzereignisse aus und nutzt somit die als "List-Mode" bekannten Rohdaten eines PET Systems. Für die Akquisition dieser Daten wurden eigens Methoden entwickelt, die es erstmals erlauben, diese Rohdaten von einem ECAT Exact HR+ PET Scanner innerhalb eines akzeptablen Zeitraumes zu erhalten. Des Weiteren wurden Methoden für die klinische Akquisition der Bewegungsdaten sowie für die automatische Auswertung dieser Daten entwickelt. Ebenfalls Teil der Arbeit waren die Entwicklung von Methoden zur Integration in die klinische Routine (z.B. graphische Nutzeroberflächen). Nach der Entwicklung, Optimierung und Integration der event-basierten Bewegungskorrektur für die klinische Nutzung wurden Analysen anhand von Beispieldatensätzen vorgenommen. Es zeigten sich bei der Auswertung sowohl der qualitativen als auch der quantitativen Effekte deutliche Änderungen. In qualitativer Hinsicht wurden Bildartefakte eliminiert; bei der quantitativen Auswertung einer FDOPA Messung zeigte sich eine revelante Änderung der R0k3 Einstromraten eines irreversiblen Zweikompartment-Modells mit Referenzgewebe. Es konnte somit gezeigt werden, dass eine Integration einer Bewegungskorrektur unter Zuhilfenahme der Rohdaten eines PET Systems sowie unter Nutzung eines externen Verfolgungssystems nicht nur sinnvoll und in der klinischen Routine machbar ist, sondern auch zu maßgeblichen qualitativen und quantitativen Verbesserungen in der PET-Bildgebung beitragen kann.
9

Application de la spectrométrie de masse COINTOF à l'étude de la dissociation de petits agrégats d'eau protonés par collision sur un atome d'argon : développement d'une cible de nano-gouttes de gaz rare / Collision induced dissociation of protaned water clusters studies with the COINTOF mass spectrometry technique : development of a target of rare gas droplets

Buridon, Victor 13 December 2013 (has links)
L'étude de l'irradiation dans le système moléculaire à l'échelle du nanomètre est un domaine d'investigation innovant des sciences des radiations. Le Dispositif d'Irradiation d'Agrégats Moléculaires (DIAM) est conçu en vue les conséquences de l'irradiation dans des petits systèmes moléculaires modèles comme les agrégats d'eau protonés. L'irradiation provoque la fragmentation en plusieurs fragments neutres ou chargés. La technique de spectrométrie de masse COINTOF (Correlated Ion and Neutral Time of Flight) permet la détection corrélées des fragments neutres et chargés issus de la dissociation d'un système moléculaire préalablement sélectionné en masse et en vitesse. Les données collectées sont traitées et structurées pour permettre l'analyse statistique des corrélations sur un grand nombre d'événements de fragmentation. Parallèlement à l'identification des canaux de fragmentation, la technique COINTOF permet la mesure de leur rapport de branchement et de leur section efficace. La méthode est présentée pour la dissociation induite par collision sur un atome d'argon, d'agrégats d'eau protonés H+(H2O)n:[2;7], accélérés à 8keV. L'efficacité de détection, information déterminante pour la production de données quantitatives, est mesurée à partir des données et étudiée en fonction de la distribution l'amplitude des signaux de détection. Enfin, un nouveau système de cible constituée de nanogouttes de gaz rares a été développé / The study of irradiation in molecular systems at the nanometer scale is an innovative field of research in radiation sciences. The DIAM set-up (Dispositif d'Irradiation d'Agrégats Moléculaires) is designed in order to observe and to characterize the consequences of radiation action on model molecular nanosystems such as protonated water clusters. Irradiation induces the fragmentation of the nanosystem in several neutral and charged fragments. The COINTOF (Correlated Ion and Neutral fragments Time of Flight) mass spectrometry techniques allows the correlated detection of the neutral and charged fragments resulting from the dissociation of a mass and velocity selected molecular system. The data processing is performed before the statistical analysis of the fragment production over a large number of fragmentation events. In parallel with the fragmentation channel identification, branching ratio and cross sections are measured with the COINTOF technique. The method is presented here for the collision induced dissociation on argon atoms of protonated water clusters H+(H2O)n, n=2-7, accelerated at 8keV. The detection efficiency, key parameter for the production of quantitative results, is measured from the set of data itself and studied as a function of the amplitude distribution of the detection signal. Finally, a new set-up for production of rare-gas nanodroplets target has been developed
10

Event-Driven Motion Compensation in Positron Emission Tomography: Development of a Clinically Applicable Method

Langner, Jens 28 July 2009 (has links)
Positron emission tomography (PET) is a well-established functional imaging method used in nuclear medicine. It allows for retrieving information about biochemical and physiological processes in vivo. The currently possible spatial resolution of PET is about 5 mm for brain acquisitions and about 8 mm for whole-body acquisitions, while recent improvements in image reconstruction point to a resolution of 2 mm in the near future. Typical acquisition times range from minutes to hours due to the low signal-to-noise ratio of the measuring principle, as well as due to the monitoring of the metabolism of the patient over a certain time. Therefore, patient motion increasingly limits the possible spatial resolution of PET. In addition, patient immobilisations are only of limited benefit in this context. Thus, patient motion leads to a relevant resolution degradation and incorrect quantification of metabolic parameters. The present work describes the utilisation of a novel motion compensation method for clinical brain PET acquisitions. By using an external motion tracking system, information about the head motion of a patient is continuously acquired during a PET acquisition. Based on the motion information, a newly developed event-based motion compensation algorithm performs spatial transformations of all registered coincidence events, thus utilising the raw data of a PET system - the so-called `list-mode´ data. For routine acquisition of this raw data, methods have been developed which allow for the first time to acquire list-mode data from an ECAT Exact HR+ PET scanner within an acceptable time frame. Furthermore, methods for acquiring the patient motion in clinical routine and methods for an automatic analysis of the registered motion have been developed. For the clinical integration of the aforementioned motion compensation approach, the development of additional methods (e.g. graphical user interfaces) was also part of this work. After development, optimisation and integration of the event-based motion compensation in clinical use, analyses with example data sets have been performed. Noticeable changes could be demonstrated by analysis of the qualitative and quantitative effects after the motion compensation. From a qualitative point of view, image artefacts have been eliminated, while quantitatively, the results of a tracer kinetics analysis of a FDOPA acquisition showed relevant changes in the R0k3 rates of an irreversible reference tissue two compartment model. Thus, it could be shown that an integration of a motion compensation method which is based on the utilisation of the raw data of a PET scanner, as well as the use of an external motion tracking system, is not only reasonable and possible for clinical use, but also shows relevant qualitative and quantitative improvement in PET imaging. / Die Positronen-Emissions-Tomographie (PET) ist ein in der Nuklearmedizin etabliertes funktionelles Schnittbildverfahren, das es erlaubt Informationen über biochemische und physiologische Prozesse in vivo zu erhalten. Die derzeit erreichbare räumliche Auflösung des Verfahrens beträgt etwa 5 mm für Hirnaufnahmen und etwa 8 mm für Ganzkörperaufnahmen, wobei erste verbesserte Bildrekonstruktionsverfahren eine Machbarkeit von 2 mm Auflösung in Zukunft möglich erscheinen lassen. Durch das geringe Signal/Rausch-Verhältnis des Messverfahrens, aber auch durch die Tatsache, dass der Stoffwechsel des Patienten über einen längeren Zeitraum betrachtet wird, betragen typische PET-Aufnahmezeiten mehrere Minuten bis Stunden. Dies hat zur Folge, dass Patientenbewegungen zunehmend die erreichbare räumliche Auflösung dieses Schnittbildverfahrens limitieren. Eine Immobilisierung des Patienten zur Reduzierung dieser Effekte ist hierbei nur bedingt hilfreich. Es kommt daher zu einer relevanten Auflösungsverschlechterung sowie zu einer Verfälschung der quantifizierten Stoffwechselparameter. Die vorliegende Arbeit beschreibt die Nutzbarmachung eines neuartigen Bewegungskorrekturverfahrens für klinische PET-Hirnaufnahmen. Mittels eines externen Bewegungsverfolgungssystems wird während einer PET-Untersuchung kontinuierlich die Kopfbewegung des Patienten registriert. Anhand dieser Bewegungsdaten führt ein neu entwickelter event-basierter Bewegungskorrekturalgorithmus eine räumliche Korrektur aller registrierten Koinzidenzereignisse aus und nutzt somit die als "List-Mode" bekannten Rohdaten eines PET Systems. Für die Akquisition dieser Daten wurden eigens Methoden entwickelt, die es erstmals erlauben, diese Rohdaten von einem ECAT Exact HR+ PET Scanner innerhalb eines akzeptablen Zeitraumes zu erhalten. Des Weiteren wurden Methoden für die klinische Akquisition der Bewegungsdaten sowie für die automatische Auswertung dieser Daten entwickelt. Ebenfalls Teil der Arbeit waren die Entwicklung von Methoden zur Integration in die klinische Routine (z.B. graphische Nutzeroberflächen). Nach der Entwicklung, Optimierung und Integration der event-basierten Bewegungskorrektur für die klinische Nutzung wurden Analysen anhand von Beispieldatensätzen vorgenommen. Es zeigten sich bei der Auswertung sowohl der qualitativen als auch der quantitativen Effekte deutliche Änderungen. In qualitativer Hinsicht wurden Bildartefakte eliminiert; bei der quantitativen Auswertung einer FDOPA Messung zeigte sich eine revelante Änderung der R0k3 Einstromraten eines irreversiblen Zweikompartment-Modells mit Referenzgewebe. Es konnte somit gezeigt werden, dass eine Integration einer Bewegungskorrektur unter Zuhilfenahme der Rohdaten eines PET Systems sowie unter Nutzung eines externen Verfolgungssystems nicht nur sinnvoll und in der klinischen Routine machbar ist, sondern auch zu maßgeblichen qualitativen und quantitativen Verbesserungen in der PET-Bildgebung beitragen kann.

Page generated in 0.0441 seconds