• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 86
  • 7
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 261
  • 261
  • 83
  • 81
  • 76
  • 69
  • 67
  • 55
  • 55
  • 55
  • 54
  • 48
  • 42
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

An artificial life approach to evolutionary computation: from mobile cellular algorithms to artificial ecosystems

Vulli, Srinivasa Shivakar, January 2010 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed July 19, 2010) Includes bibliographical references (p. 57-60).
102

Abordagem evolucionária com idades para construção de conhecimento aplicado à robótica móvel / An evolutionary approach with ages to knowledgebuilding applied to mobile autonomous robotics

Schneider, Andre Marcelo January 2006 (has links)
Este trabalho apresenta e discute uma proposta de estratégia inédita para o problema de aprendizado de regras através de Sistemas Classificadores, aplicado à robótica móvel, utilizando um robô NOMAD 200. Esta estratégia tem como base, teorias de Algoritmos Genéticos e de Sistemas Classificadores, que são os paradigmas constituintes do núcleo da arquitetura implementada para o controle do robô. O aspecto diferencial desta abordagem é a inspiração em Algoritmos Genéticos com Idades, para permitir o uso e controle de uma população de tamanho variável. O sistema foi modelado observando-se características físicas do robô NOMAD 200 e sendo constituído por módulos de gerenciamento de memória, reprodução, controle da população e execução. A memória se apresenta como uma base de regras de produção; o módulo de reprodução incorpora um AG tradicional, com operadores de seleção, cruzamento e mutação; o controle populacional permite o uso de população de tamanho variável, através do de índices de usabilidade e similaridade das regras com as situações confrontadas pelo robô; por fim, o módulo de execução é responsável pela interação do robô com o ambiente, realizando leitura dos sensores e ações pelos atuadores e, quando necessário, ativar funções de segurança para preservar a integridade física do robô. Para dar sustentabilidade à proposta, esta foi validada através de vários experimentos, realizados em ambientes simulados e em um ambiente real, com um robô NOMAD 200, em diferentes cenários. Os ambientes testados variam desde ambientes esparsos até labirintos com obstáculos e paredes ortogonais entre si. Para cada experimento são apresentados os resultados e respectiva análise de dados. Foram realizadas análises criteriosas no comportamento da população, observando seu crescimento e idade média, bem como os eventos ocorridos no processo de aprendizado, para certificar as características a que se propõe esta abordagem. A principal contribuição deste trabalho é o uso da "IDADE" e II"CSABILIDADE" em um sistema baseado em SC. A usabilidade substitui o atributo de energia e respectivos cálculos do SC tradicional, no processo de escolha das regras, simplificando a implementação. Além disso, pode ser utilizado como índice de ajuste, para que possam ser usadas técnicas convencionais de seleção. A idade é responsável por preservar ou eliminar os indivíduos da população, através de estratégias de penalização e recompensa, possibilitando manter uma população de regras de tamanho variável, permitindo, ainda, manter a diversidade genética na população e evitar a sua homogenização, bem como isentar o modelador do sistema da definição destes parâmetros. / In this work, we propose a new strategy to the problem of learning rules in a Evolutionary System that is applied for mobile robotics using a NOMAD 200 robot. This strategy is based on Genetic AIgoriths and Classifier Systems theories, which are the paradigms of the implemented architecture core for robot controI. The unique feature of this approach is the inspiration on Genetic AIgorithms with Ages. This feature allows the algorithm to make use of a controlled variable size population. The system was designed respecting the physical features of the ~OMAD 200 robot. It is composed by modules of memory, reproduction, populational control and execution. The memory is the base for production rules. The reproduction module is a conventional GA, with operators for selection, crossover and mutation. The population control allows the use of a variable size population, based on the usability and the similarity of the rules on the situations presented to the robot. Finally, the execution module is responsable for the interaction between the robot and the environment, making the sensors reading and action application from the actuators and, if necessary, activating the security functions to preserve the physical integrity of the robot. To give support to the proposal, it was validated through several experiments, performed both in a simulated environment and in a real NOMAD 200 robot, in several cenarios. The environments used in the experiments ranged from open spaces to labyrinths with obstacles and ortogonal walls. Vle present the results and data analysis for each one of the experiments. AIso, the population behavior is analysed, by the observation of his growing and average age and the events occurred during the learning process, to confirm the features of these approach. The main contribution of this work is the use of "AGE"and ""CSABILITY"in a CS based system. The usability replaces the strength attribute and respective calculations necessary in the process of choosing rules in traditional CS. Because of this change, our solution is simpler to implement than traditional CS systems. Besides that, the usability can be used as fitness value, making possible the use of conventional selection techniques. The Age is responsible for the decision of to preserve or to elliminate individuaIs from the population. The choose of individuaIs is done by a penalty and reward strategy, which permits a variable size population of rules with genetic diversity and avoid the population's homogenization. The use of the age for decision making aIso preserves the system developer from the task of defining these parameters.
103

Abordagem evolucionária com idades para construção de conhecimento aplicado à robótica móvel / An evolutionary approach with ages to knowledgebuilding applied to mobile autonomous robotics

Schneider, Andre Marcelo January 2006 (has links)
Este trabalho apresenta e discute uma proposta de estratégia inédita para o problema de aprendizado de regras através de Sistemas Classificadores, aplicado à robótica móvel, utilizando um robô NOMAD 200. Esta estratégia tem como base, teorias de Algoritmos Genéticos e de Sistemas Classificadores, que são os paradigmas constituintes do núcleo da arquitetura implementada para o controle do robô. O aspecto diferencial desta abordagem é a inspiração em Algoritmos Genéticos com Idades, para permitir o uso e controle de uma população de tamanho variável. O sistema foi modelado observando-se características físicas do robô NOMAD 200 e sendo constituído por módulos de gerenciamento de memória, reprodução, controle da população e execução. A memória se apresenta como uma base de regras de produção; o módulo de reprodução incorpora um AG tradicional, com operadores de seleção, cruzamento e mutação; o controle populacional permite o uso de população de tamanho variável, através do de índices de usabilidade e similaridade das regras com as situações confrontadas pelo robô; por fim, o módulo de execução é responsável pela interação do robô com o ambiente, realizando leitura dos sensores e ações pelos atuadores e, quando necessário, ativar funções de segurança para preservar a integridade física do robô. Para dar sustentabilidade à proposta, esta foi validada através de vários experimentos, realizados em ambientes simulados e em um ambiente real, com um robô NOMAD 200, em diferentes cenários. Os ambientes testados variam desde ambientes esparsos até labirintos com obstáculos e paredes ortogonais entre si. Para cada experimento são apresentados os resultados e respectiva análise de dados. Foram realizadas análises criteriosas no comportamento da população, observando seu crescimento e idade média, bem como os eventos ocorridos no processo de aprendizado, para certificar as características a que se propõe esta abordagem. A principal contribuição deste trabalho é o uso da "IDADE" e II"CSABILIDADE" em um sistema baseado em SC. A usabilidade substitui o atributo de energia e respectivos cálculos do SC tradicional, no processo de escolha das regras, simplificando a implementação. Além disso, pode ser utilizado como índice de ajuste, para que possam ser usadas técnicas convencionais de seleção. A idade é responsável por preservar ou eliminar os indivíduos da população, através de estratégias de penalização e recompensa, possibilitando manter uma população de regras de tamanho variável, permitindo, ainda, manter a diversidade genética na população e evitar a sua homogenização, bem como isentar o modelador do sistema da definição destes parâmetros. / In this work, we propose a new strategy to the problem of learning rules in a Evolutionary System that is applied for mobile robotics using a NOMAD 200 robot. This strategy is based on Genetic AIgoriths and Classifier Systems theories, which are the paradigms of the implemented architecture core for robot controI. The unique feature of this approach is the inspiration on Genetic AIgorithms with Ages. This feature allows the algorithm to make use of a controlled variable size population. The system was designed respecting the physical features of the ~OMAD 200 robot. It is composed by modules of memory, reproduction, populational control and execution. The memory is the base for production rules. The reproduction module is a conventional GA, with operators for selection, crossover and mutation. The population control allows the use of a variable size population, based on the usability and the similarity of the rules on the situations presented to the robot. Finally, the execution module is responsable for the interaction between the robot and the environment, making the sensors reading and action application from the actuators and, if necessary, activating the security functions to preserve the physical integrity of the robot. To give support to the proposal, it was validated through several experiments, performed both in a simulated environment and in a real NOMAD 200 robot, in several cenarios. The environments used in the experiments ranged from open spaces to labyrinths with obstacles and ortogonal walls. Vle present the results and data analysis for each one of the experiments. AIso, the population behavior is analysed, by the observation of his growing and average age and the events occurred during the learning process, to confirm the features of these approach. The main contribution of this work is the use of "AGE"and ""CSABILITY"in a CS based system. The usability replaces the strength attribute and respective calculations necessary in the process of choosing rules in traditional CS. Because of this change, our solution is simpler to implement than traditional CS systems. Besides that, the usability can be used as fitness value, making possible the use of conventional selection techniques. The Age is responsible for the decision of to preserve or to elliminate individuaIs from the population. The choose of individuaIs is done by a penalty and reward strategy, which permits a variable size population of rules with genetic diversity and avoid the population's homogenization. The use of the age for decision making aIso preserves the system developer from the task of defining these parameters.
104

Abordagem evolucionária com idades para construção de conhecimento aplicado à robótica móvel / An evolutionary approach with ages to knowledgebuilding applied to mobile autonomous robotics

Schneider, Andre Marcelo January 2006 (has links)
Este trabalho apresenta e discute uma proposta de estratégia inédita para o problema de aprendizado de regras através de Sistemas Classificadores, aplicado à robótica móvel, utilizando um robô NOMAD 200. Esta estratégia tem como base, teorias de Algoritmos Genéticos e de Sistemas Classificadores, que são os paradigmas constituintes do núcleo da arquitetura implementada para o controle do robô. O aspecto diferencial desta abordagem é a inspiração em Algoritmos Genéticos com Idades, para permitir o uso e controle de uma população de tamanho variável. O sistema foi modelado observando-se características físicas do robô NOMAD 200 e sendo constituído por módulos de gerenciamento de memória, reprodução, controle da população e execução. A memória se apresenta como uma base de regras de produção; o módulo de reprodução incorpora um AG tradicional, com operadores de seleção, cruzamento e mutação; o controle populacional permite o uso de população de tamanho variável, através do de índices de usabilidade e similaridade das regras com as situações confrontadas pelo robô; por fim, o módulo de execução é responsável pela interação do robô com o ambiente, realizando leitura dos sensores e ações pelos atuadores e, quando necessário, ativar funções de segurança para preservar a integridade física do robô. Para dar sustentabilidade à proposta, esta foi validada através de vários experimentos, realizados em ambientes simulados e em um ambiente real, com um robô NOMAD 200, em diferentes cenários. Os ambientes testados variam desde ambientes esparsos até labirintos com obstáculos e paredes ortogonais entre si. Para cada experimento são apresentados os resultados e respectiva análise de dados. Foram realizadas análises criteriosas no comportamento da população, observando seu crescimento e idade média, bem como os eventos ocorridos no processo de aprendizado, para certificar as características a que se propõe esta abordagem. A principal contribuição deste trabalho é o uso da "IDADE" e II"CSABILIDADE" em um sistema baseado em SC. A usabilidade substitui o atributo de energia e respectivos cálculos do SC tradicional, no processo de escolha das regras, simplificando a implementação. Além disso, pode ser utilizado como índice de ajuste, para que possam ser usadas técnicas convencionais de seleção. A idade é responsável por preservar ou eliminar os indivíduos da população, através de estratégias de penalização e recompensa, possibilitando manter uma população de regras de tamanho variável, permitindo, ainda, manter a diversidade genética na população e evitar a sua homogenização, bem como isentar o modelador do sistema da definição destes parâmetros. / In this work, we propose a new strategy to the problem of learning rules in a Evolutionary System that is applied for mobile robotics using a NOMAD 200 robot. This strategy is based on Genetic AIgoriths and Classifier Systems theories, which are the paradigms of the implemented architecture core for robot controI. The unique feature of this approach is the inspiration on Genetic AIgorithms with Ages. This feature allows the algorithm to make use of a controlled variable size population. The system was designed respecting the physical features of the ~OMAD 200 robot. It is composed by modules of memory, reproduction, populational control and execution. The memory is the base for production rules. The reproduction module is a conventional GA, with operators for selection, crossover and mutation. The population control allows the use of a variable size population, based on the usability and the similarity of the rules on the situations presented to the robot. Finally, the execution module is responsable for the interaction between the robot and the environment, making the sensors reading and action application from the actuators and, if necessary, activating the security functions to preserve the physical integrity of the robot. To give support to the proposal, it was validated through several experiments, performed both in a simulated environment and in a real NOMAD 200 robot, in several cenarios. The environments used in the experiments ranged from open spaces to labyrinths with obstacles and ortogonal walls. Vle present the results and data analysis for each one of the experiments. AIso, the population behavior is analysed, by the observation of his growing and average age and the events occurred during the learning process, to confirm the features of these approach. The main contribution of this work is the use of "AGE"and ""CSABILITY"in a CS based system. The usability replaces the strength attribute and respective calculations necessary in the process of choosing rules in traditional CS. Because of this change, our solution is simpler to implement than traditional CS systems. Besides that, the usability can be used as fitness value, making possible the use of conventional selection techniques. The Age is responsible for the decision of to preserve or to elliminate individuaIs from the population. The choose of individuaIs is done by a penalty and reward strategy, which permits a variable size population of rules with genetic diversity and avoid the population's homogenization. The use of the age for decision making aIso preserves the system developer from the task of defining these parameters.
105

Inteligencia computacional na sintese de meta-heuristicas para otimização combinatoria e multimodal / Computacional intelligence applied to the synthesis of metaheuristics for combinatorial and multimodal optimization

Gomes, Lalinka de Campos Teixeira 06 December 2006 (has links)
Orientadores: Fernando Jose Von Zuben, Leandro Nunes de Castro / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-15T01:42:44Z (GMT). No. of bitstreams: 1 Gomes_LalinkadeCamposTeixeira_D.pdf: 3303378 bytes, checksum: 65adc8d5ec20cd1f431eaca2fe3765cc (MD5) Previous issue date: 2006 / Resumo: Problemas de otimização combinatória apresentam grande relevância prática e surgem em uma ampla gama de aplicações. Em geral, a otimização combinatória está associada a uma explosão de candidatos à solução, inviabilizando a aplicação de métodos exatos. Frente à intratabilidade desta classe de problemas via métodos exatos, nos últimos anos tem havido um crescente interesse por métodos heurísticos capazes de encontrar soluções de alta qualidade, não necessariamente ótimas. Considerando o notório sucesso empírico de meta-heurísticas concebidas através da inspiração biológica e na natureza, essas abordagens vêm ganhando cada vez mais atenção por parte de pesquisadores. É fato conhecido que não existe uma única metodologia capaz de sempre produzir os melhores resultados para todas as classes de problemas, ou mesmo para todas as instâncias de uma mesma classe. Assim, a busca de solução para problemas de natureza combinatória constitui uma linha de pesquisa desafiadora. Nesta tese são considerados problemas de otimização combinatória multicritério e multimodal. Como principal contribuição, destaca-se a concepção de novas meta-heurísticas para a solução de problemas combinatórios de elevada complexidade, tendo sido propostas duas classes de ferramentas computacionais. A primeira envolve um método híbrido fundamentado em mapas auto-organizáveis de Kohonen e inferência nebulosa, em que um conjunto de regras guia o processo de treinamento do mapa de modo a permitir o tratamento de problemas com restrições e múltiplos objetivos. A segunda abordagem baseia-se em sistemas imunológicos artificiais. Em particular, a abordagem imunológica levou à proposição de meta-heurísticas capazes de encontrar e manter diversas soluções de alta qualidade, viabilizando o tratamento de problemas multimodais. Como casos de estudo, foram consideradas duas classes de problemas de otimização combinatória multimodal: o problema de roteamento de veículos capacitados e o problema do caixeiro viajante simétrico. As técnicas propostas foram também adaptadas para a solução de problemas de bioinformática, em particular ao problema de análise de dados de expressão gênica, produzindo resultados diferenciados e indicando um elevado potencial para aplicações práticas. / Abstract: Combinatorial optimization problems possess a high practical relevance and emerge on a wide range of applications. Usually, combinatorial optimization is associated with an explosion of candidates to the solution, making exact methods unfeasible. Before the unfeasibility of exact methods when dealing with this class of problems, lately there has been an increasing interest in heuristic methods capable of finding high-quality solutions, not necessarily the optimal one. Considering the widely known empirical success of metaheuristics conceived with inspiration on biological systems and on the nature itself, such approaches are receiving more and more attention from the scientific community. Evidently, there is no single methodology able to always produce the best results for all classes of problems, or even for all instances of one specific class. That is why the search for solutions to combinatorial problems remains a challenging task. This thesis considers multicriteria and multimodal combinatorial optimization problems. As the main contribution, one can emphasize the conception of new metaheuristics designed to the solution of high-complexity combinatorial optimization problems, and two classes of computational tools have been proposed. The first one involves hybrid method based on Kohonen self-organizing maps and fuzzy inference, in which a set of rules guides the training of the self-organizing maps in order to allow the handling of problems with constraints and multiple objectives. The second approach is based on artificial immune systems. Particularly, the immune-inspired approach leads to the proposal of metaheuristics capable of finding out and maintaining multiple high-quality solutions, making it possible to deal with multimodal problems. As case studies, the capacitated vehicle routing problem and the symmetric traveling salesman problem are considered, giving rise to combinatorial and multimodal problems. The proposed techniques were also adapted to the solution of problems in the field of bioinformatics, specifically the analysis of gene expression data, leading to distinguished results and indicating a high potential for practical applications. / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
106

Algoritmo genético aplicado à formulação de ração para frangos de corte / Genetic algorithm applied to feed formulation for broiler chickens

Rogério Rodrigues Lacerda Costa 28 August 2017 (has links)
Este projeto teve por objetivo a implementação de software para formulação de ração de frangos de corte utilizando Algoritmo Genético (AG). A geração da população inicial foi direcionada, impedindo a geração de indivíduos que possuíam características restritivas. Realizou-se três experimentos, sendo o primeiro para definição do tamanho da população, número de gerações e método de seleção de pais, o segundo para comparar a formulação de ração do AG com a do Simplex e o terceiro para verificar a variabilidade de resultados do AG. O experimento 1 foi realizado em delineamento inteiramente ao acaso, com tratamentos arranjados em esquema fatorial 2 x 5 x 19, sendo os fatores: métodos de seleção de pais (roleta e torneio de três), tamanho de população (200, 360, 500, 1.000 e 1.500 indivíduos) e número de geração (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 e 1.000), totalizando 190 tratamentos, com 20 repetições resultando em 3.800 observações. A cada observação registrou-se o fitness que foi submetido a análise de variância e quando significativa (P<0,05) aplicou-se o teste de Scott-Knott (5%). No experimento 2 foram formuladas três rações, sendo uma ração pelo método Simplex e duas pelo AG. As rações formuladas com AG utilizaram os parâmetros de tamanho de população, método de seleção de pais e número de gerações definidos no experimento 1. Os resultados obtidos pelo AG proporcionaram rações que apresentam uma diferença média no atendimento das necessidades nutricionais de 0,34% para a ração formulada pelo método roleta e de 0,16% pelo método torneio de três, sendo essas diferenças pequenas e que provavelmente não impactam sobre o desempenho animal e sobre as características de carcaça. A variação de resultados existente no AG, devido a sua característica heurística, foi testada no experimento 3 por intermédio de 100 execuções para cada método de seleção de pais, roleta e torneio de três, utilizando os mesmos parâmetros de tamanho de população e número de gerações das rações formuladas no experimento 2. Os resultados obtidos demonstram baixa dispersão nos dados. Conclui-se que o AG é uma estratégia de otimização eficiente para formulação de rações para frangos de corte, pois aproxima-se do atendimento exato da exigência nutricional, com variação pequena, e com mínimo custo. / The objective of the present project was to implement software for the formulation of broiler chicken feed using a Genetic Algorithm (GA). The generation of the initial population was directed, preventing the production of individuals with restrictive characteristics. A total of three experiments were carried out: the first one to define the population size, number of generations, and the method of parent selection; the second to compare ration formulation using the GA with that of the Simplex method, and the third to verify result variability using the GA. Experiment 1 was performed in a completely randomized design, with arranged treatments in a 2 x 5 x 19 factorial scheme, assessing the following factors: parent selection methods (roulette-wheel selection and tournament selection of three), population size (200, 360, 500, 1 000 and 1 500 individuals), and number of generations (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1 000 ), totaling 190 treatments, with 20 repetitions each, resulting in 3 800 recordings. At each observation, the registered fitness was submitted to variance analysis, and if significant (P < 0.05), the Scott-Knott test (5%) was applied. In the second experiment, three rations were formulated: one by the Simplex method, and two employing the GA. The feeds formulated with the GA used the parameters of population size, parent selection method, and number of generations, defined in experiment 1. The results obtained by the GA provided feeds that exhibited a mean difference in nutritional requirements of 0.34% for the ration formulated by the roulette-wheel method and 0.16% for the tournament selection of three technique. These differences are considered small and may not impact on animal performance and carcass characteristics. The variation regarding the GA results, given its heuristic attribute, was tested in experiment 3 using 100 repetitions of each method of parent selection, employing the same parameters regarding population size and number of generations of the rations formulated in experiment 2. The obtained results demonstrate low data dispersion. In conclusion, the GA is an efficient optimization strategy for the formulation of broiler chicken feeds, since it approximates the exact fulfillment of the nutritional requirement, with small variation, and with minimum cost.
107

Redes neurais evolutivas com aprendizado extremo recursivo / Evolving neural networks with recursive extreme learning

Rosa, Raul Arthur Fernandes, 1989- 26 August 2018 (has links)
Orientadores: Fernando Antonio Campos Gomide, Marcos Eduardo Ribeiro do Valle Mesquita / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T08:06:32Z (GMT). No. of bitstreams: 1 Rosa_RaulArthurFernandes_M.pdf: 8750754 bytes, checksum: 0535142e4de0e75e311aea59a977386e (MD5) Previous issue date: 2014 / Resumo: Esta dissertação estuda uma classe de redes neurais evolutivas para modelagem de sistemas a partir de um fluxo de dados. Esta classe é caracterizada por redes evolutivas com estruturas feedforward e uma camada intermediária cujo número de neurônios é variável e determinado durante a modelagem. A aprendizagem consiste em utilizar métodos de agrupamento para estimar o número de neurônios na camada intermediária e algoritmos de aprendizagem extrema para determinar os pesos da camada intermediária e de saída da rede. Neste caso, as redes neurais são chamadas de redes neurais evolutivas. Um caso particular de redes evolutivas é quando o número de neurônios da camada intermediária é determinado a priori, mantido fixo, e somente os pesos da camada intermediária e de saída da rede são atualizados de acordo com dados de entrada. Os algoritmos de agrupamento e de aprendizagem extrema que compõem os métodos evolutivos são recursivos, pois a aprendizagem ocorre de acordo com o processamento de um fluxo de dados. Em particular, duas redes neurais evolutivas são propostas neste trabalho. A primeira é uma rede neural nebulosa híbrida evolutiva. Os neurônios da camada intermediária desta rede são unineurônios, neurônios nebulosos com processamento sináptico realizado por uninormas. Os neurônios da camada de saída são sigmoidais. Um algoritmo recursivo de agrupamento baseado em densidade, chamado de nuvem, é utilizado para particionar o espaço de entrada-saída do sistema e estimar o número de neurônios da camada intermediária da rede; a cada nuvem corresponde um neurônio. Os pesos da rede neural nebulosa híbrida são determinados utilizando a máquina de aprendizado extremo com o algoritmo quadrados mínimos recursivo ponderado. O segundo tipo de rede proposto neste trabalho é uma rede neural multicamada evolutiva com neurônios sigmoidais na camada intermediária e de saída. Similarmente à rede híbrida, nuvens particionam o espaço de entrada-saída do sistema e são utilizadas para estimar o número de neurônios da camada intermediária. O algoritmo para determinar os pesos da rede é a mesma versão recursiva da máquina de aprendizado extremo. Além das redes neurais evolutivas, sugere-se também uma variação da rede adaptativa OS-ELM (online sequential extreme learning machine) mantendo o número de neurônios na camada intermediária fixo e introduzindo neurônios sigmoidais na camada de saída. Neste caso, a aprendizagem usa o algoritmo dos quadrados mínimos recursivo ponderado no aprendizado extremo. As redes foram analisadas utilizando dois benchmarks clássicos: identificação de forno a gás com o conjunto de dados de Box-Jenkins e previsão de série temporal caótica de Mackey-Glass. Dados sintéticos foram gerados para analisar as redes neurais na modelagem de sistemas com parâmetros e estrutura variantes no tempo (concept drif e concept shift). Os desempenhos foram quantificados usando a raiz quadrada do erro quadrado médio e avaliados com o teste estatístico de Deibold-Mariano. Os desempenhos das redes neurais evolutivas e da rede adaptativa foram comparados com os desempenhos da rede neural com aprendizagem extrema e dos métodos de modelagem evolutivos representativos do estado da arte. Os resultados mostram que as redes neurais evolutivas sugeridas neste trabalho são competitivas e têm desempenhos similares ou superiores às abordagens evolutivas propostas na literatura / Abstract: Abstract: This dissertation studies a class of evolving neural networks for system modeling from data streams. The class encompasses single hidden layer feedforward neural networks with variable and online de nition of the number of hidden neurons. Evolving neural network learning uses clustering methods to estimate the number of hidden neurons simultaneously with extreme learning algorithms to compute the weights of the hidden and output layers. A particular case is when the evolving network keeps the number of hidden neurons xed. In this case, the number of hidden neurons is found a priori, and the hidden and output layer weights updated as data are input. Clustering and extreme learning algorithms are recursive. Therefore, the learning process may occur online or real-time using data stream as input. Two evolving neural networks are suggested in this dissertation. The rst is na evolving hybrid fuzzy neural network with unineurons in the hidden layer. Unineurons are fuzzy neurons whose synaptic processing is performed using uninorms. The output neurons are sigmoidals. A recursive clustering algorithm based on density and data clouds is used to granulate the input-output space, and to estimate the number of hidden neurons of the network. Each cloud corresponds to a hidden neuron. The weights of the hybrid fuzzy neural network are found using the extreme learning machine and the weighted recursive least squares algorithm. The second network is an evolving multilayer neural network with sigmoidal hidden and output neurons. Like the hybrid neural fuzzy network, clouds granulate the input-output space and gives the number of hidden neurons. The algorithm to compute the network weights is the same recursive version of the extreme learning machine. A variation of the adaptive OS-ELM (online sequential extreme learning machine) network is also suggested. Similarly as the original, the new OS-ELM xes the number of hidden neurons, but uses sigmoidal instead of linear neurons in the output layer. The new OS-ELM also uses weighted recursive least square.The hybrid and neural networks were evaluated using two classic benchmarks: the gas furnace identi cation using the Box-Jenkins data, and forecasting of the chaotic Mackey-Glass time series. Synthetic data were produced to evaluate the neural networks when modeling systems with concept drift and concept shift. This a modeling circumstance in which system structure and parameters change simultaneously. Evaluation was done using the root mean square error and the Deibold-Mariano statistical test. The performance of the evolving and adaptive neural networks was compared against neural network with extreme learning, and evolving modeling methods representative of the current state of the art. The results show that the evolving neural networks and the adaptive network suggested in this dissertation are competitive and have similar or superior performance than the evolving approaches proposed in the literature / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
108

Uma abordagem evolutiva multiobjetivo para geração automática de casos de teste a partir de máquinas de estados / A multi-objective evolutionary approach for automatic generation of test cases from state machines

Yano, Thaise, 1979- 19 August 2018 (has links)
Orientador: Eliane Martins / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-19T05:45:54Z (GMT). No. of bitstreams: 1 Yano_Thaise_D.pdf: 3255120 bytes, checksum: aeeb5d60f26f78fb86cf18e8d3342862 (MD5) Previous issue date: 2011 / Resumo: A geração automática de casos de teste contribui tanto para melhorar a produtividade quanto para reduzir esforço e custo no processo de desenvolvimento de software. Neste trabalho é proposta uma abordagem, denominada MOST (Multi-Objective Search-based Testing approach from EFSM), para gerar casos de teste a partir de Máquina de Estados Finitos Estendida (MEFE) com a aplicação de uma técnica de otimização. No teste baseado em MEFE, é necessário encontrar uma sequência de entrada para exercitar um caminho no modelo, a fim de cobrir um critério de teste (e.g. todas as transições). Como as sequências podem ter diferentes tamanhos, motivou-se o desenvolvimento do algoritmo M-GEOvsl (Multi-Objective Generalized Extremal Optimization with variable string length) que permite gerar soluções de diferentes tamanhos. Além disso, por ser um algoritmo multiobjetivo, M-GEOvsl também possibilita que mais de um critério seja usado para avaliar as soluções. Com a aplicação desse algoritmo em MOST, tanto a cobertura da transição alvo quanto o tamanho da sequência são levados em consideração na geração de casos de teste. Para guiar a busca, são utilizadas informações das dependências do modelo. O algoritmo gera as sequências de entrada, incluindo os valores de seus parâmetros. Em MOST, um modelo executável da MEFE recebe como entrada os dados gerados pelo M-GEOvsl e produz dinamicamente os caminhos percorridos. Uma vez que os aspectos de controle e dados do modelo são considerados durante a execução do modelo, evita-se o problema de geração de caminhos infactíveis. Um caminho pode ser sintaticamente possível, mas semanticamente infactível, devido aos conitos de dados envolvidos no modelo. Para avaliar a abordagem proposta foram realizados vários experimentos com modelos da literatura e de aplicações reais. Os resultados da abordagem também foram comparados com os casos de teste obtidos em um trabalho relacionado. / Abstract: Automated test case generation can improve the productivity as well as reduce effort and cost in the software development process. In this work an approach, named MOST (Multi- Objective Search-based Testing approach from EFSM), is proposed to generate test cases from Extended Finite State Machine (EFSM) using an optimization technique. In EFSM based testing, an input sequence should be found to sensitize a path in the model, in order to cover a test criterion (e.g. all transitions). As the sequences can have different lengths, it motivates the development of the M-GEOvsl (Multi-Objective Generalized Extremal Optimization with variable string length) algorithm that makes possible the generation of solutions with different lengths. Moreover, as a multiobjective algorithm, M-GEOvsl also allows to use more than one criterion to evaluate the solutions. Using this algorithm in MOST, the coverage of the target transition as well as the sequence length are taken into account in the test case generation. To guide the search, the information about the model dependences is used. The algorithm generates the input sequences, including the values of their parameters. In MOST, an executable model of the EFSM receives as input the data generated by M-GEOvsl and produces the traversed paths dynamically. Since the control and data aspects are considered during model execution, the problem of infeasible path generation is avoided. A path can be syntatically possible, but semantically infeasible, due to the data conicts in the model. In order to evaluate the proposed approach, experiments were performed with models of the literature and real-world applications. The results were also compared to the test cases obtained in a related work / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
109

Análise e controle de sistemas com folga / Analysis and control of systems with backlash

Santos, Talía Simões dos, 1980- 20 August 2018 (has links)
Orientador: Yuzo Iano / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-20T09:30:28Z (GMT). No. of bitstreams: 1 Santos_TaliaSimoesdos_D.pdf: 2990786 bytes, checksum: 16233655fc341ea120d5c50710958ef8 (MD5) Previous issue date: 2012 / Resumo: Este trabalho trata da eliminação dos efeitos indesejáveis da não linearidade tipo folga via desenvolvimento de três novos métodos computacionais para a análise de estabilidade, e controle de sistemas resultantes da interconexão de sistemas lineares com uma folga. Para solucionar o problema da análise de estabilidade, utilizam-se condições construtivas sob a forma de LMI, garantindo a estabilidade global do sistema, através de algumas funções de Lyapunov, generalizadas nas condições de contorno e representação politópica. Tais condições de estabilidade global impõem a presença de uma realimentação adicional entre a saída e a entrada da não linearidade saturação, incluída antes da folga. Este ganho adicional pode atenuar o comportamento indesejado das não linearidades. O conjunto de todos os admissíveis pontos de equilíbrio é definido precisamente. O problema de controle pode ser solucionado através de esquemas de controle adaptativo para sistemas discretos no tempo com folga desconhecida. Analisando de forma mais aprofundada, propõe-se um controlador adaptativo baseado na folga inversa que fornece novas regras adaptativas para a atualização dos parâmetros estimados da folga inversa. Dessa forma demonstra-se também que os efeitos prejudiciais da folga podem ser cancelados através de duas estruturas de controle propostas. é possível validar ainda mais este resultado projetando-se um filtro que estima a saída da folga desconhecida, ou seja, a entrada da planta. Além disso, mais um resultado de controle é conseguido, aplicando-se uma proposta de computação evolutiva para realizar o controle adaptativo de sistemas contínuos no tempo com folga desconhecida. Para cumprir este objetivo, adiciona-se também a estrutura da folga inversa antes do bloco da folga e utiliza-se o algoritmo CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) para estimar os parâmetros da folga inversa adaptativa / Abstract: This work is concerned to the elimination of the undesirable effects of the nonlinearity type backlash developing three new computational methods for the stability analysis, and control of result systems of the interconection of linear systems with a nonlinearity backlash. To solve the stability analysis problem, it is used constructive conditions in LMI form to ensure the global stability of the system, are proposed by using some suitable Lyapunov functional, generalized sector conditions and polytopic representation. Such global stability conditions impose the presence of an additional feedback between the output and the input of the nonlinear element. This additional gain can mitigate the unwished behavior of the nonlinear elements. The boundary of the associated set of all the admissible equilibrium points is precisely defined. The control problem can be solved through schemes of an adaptive control for discrete-time systems with unknown backlash. Analysing in a depth way is proposed an adaptive controller based on backlash inverse that provides new adaptive laws for updating of the estimated parameters of the backlash inverse. Then, this is also demonstrated that the harmful effects of backlash can be cancelled through two proposed control structures. It is possible to validate this result better designing a filter to estimate the unknown backlash output, that is, the plant input. Moreover, one more control result is obtained, applying an evolutionary computation to realize the adaptive control of continuous-time systems with unknown backlash. In order to do this, it is added a backlash inverse structure before the backlash scheme and used the CMA-ES (Covariance Matrix Adaptation-Evolution Strategy) algorithm to estimate the parameters of the backlash inverse / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
110

Association Rules in Parameter Tuning : for Experimental Designs

Hållén, Henrik January 2014 (has links)
The objective of this thesis was to investigate the possibility ofusing association rule algorithms to automatically generaterules for the output of a Parameter Tuning framework. Therules would be the basis for a recommendation to the user regardingwhich parameter space to reduce during experimentation.The parameter tuning output was generated by means ofan open source project (INPUT) example program. InPUT is atool used to describe computer experiment configurations in aframework independent input/output format. InPUT has adaptersfor the evolutionary algorithm framework Watchmakerand the tuning framework SPOT. The output was imported in Rand preprocessed to a format suitable for association rule algorithms.Experiments were conducted on data for which theparameter spaces were discretized in 2, 5, 10 steps. The minimumsupport threshold was set to 1% and 3% to investigatethe amount of rules over time. The Apriori and Eclat algorithmsproduced exactly the same amount of rules, and the top 5rules with regards to support were basically the same for bothalgorithms. It was not possible at the time to automatically distinguishinguseful rules. In combination with the many manualdecisions during the process of converting the tuning output toassociation rules, the conclusion was reached to not recommendassociation rules for enhancing the Parameter Tuningprocess.

Page generated in 0.1172 seconds