• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 112
  • 43
  • 18
  • 10
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 366
  • 366
  • 119
  • 115
  • 93
  • 64
  • 64
  • 62
  • 59
  • 59
  • 51
  • 47
  • 43
  • 42
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Complex Co-evolutionary Systems Approach to the Management of Sustainable Grasslands - A case study in Mexico.

Martinez-Garcia, Alejandro Nicolas Unknown Date (has links)
The complex co-evolutionary systems approach -CCeSA - provides a well-suited framework for analysing agricultural systems, serving as a bridge between physical and socioeconomic sciences, alowing for the explaination of phenomena, and for the use of metaphors for thinking and action. By studying agricultural systems as self-generated, hierarchical, complex co-evolutionary farming systems - CCeFSs -, one can investigate the interconnections between the elements that constitute CCeFSs, along with the relationships between CCeFSs and other sytems, as a fundamental step to understanding sustainability as an emergent property of the system. CCeFSs are defined as human activity systems emerging from the purposes, gestalt, mental models, history and weltanschauung of the farm manager, and from his dynamic co-evolution with the environment while managing the resources at his hand to achieve his own multiple, conflicting, dynamic, semi-structured, and often incommensurable and conflicting purposes while performing above thresholds for failure, and enough flexibility to dynamically co-evolve with its changing biophysical and socioeconomic environment for a given future period. Fitness and flexibility are essential features of sustainable CCeFSs because they describe the systems' dynamic capacity to explore and exploit their dynamic phase space while co-evolving with it. This implies that a sustainable CCeFS is conceived as a set of dynamic, co-evolutionary processes, contrasting with the standard view of sustainability as an equilibrium or steady-state. Achieving sustainable CCeFSs is a semi-structured, constrained, multi-objective and dynamic optimisation management problem, with an intractable search space, that can be solved within CCeSA with the help of a multi-objective co-evolutionary optimisation tool. Carnico-ICSPEA2, a co-evolutionary navigator - CoEvoNav -used as a CCeSA's tool for harnessing the complexity of the CCeFS of interest and its environment towards sustainability, is introduced. The software was designed by its end-user - the farm manager and author of this thesis - as an aid for the analysis and optimisation of the San Francisco ranch, a beef cattle enterprise running on temperate pastures and fodder crops in the Central Plateau of Mexico. By combining a non-linear simulator and a multi-objective evolutionary algorithm with a deterministic and stochastic framework, the CoEvoNav imitates the co-evolutionary pattern of the CCeFS of interest. As such, the software was used by the farm manager to navigate through his CCeFS's co-evolutionary phase space towards achieving sustainability at farm level. The ultimate goal was to enhance the farm manager's decision-making process and co-evolutionary skills, through an increased understanding of his system, the co-evolutionary process between his mental models, the CCeFS, and the CoEvoNav, and the continuous discovery of new, improved sets of heuristics. An overview of the methodological, theoretical and philosophical framework of the thesis is introduced. Also, a survey of the Mexican economy, its agricultural sector, and a statistical review of the Mexican beef industry is presented. Concepts such as modern agriculture, the reductionist approach to agricultural research, models, the system's environment, sustainability, conventional and sustainable agriculture, complexity, evolution, simulators, and multi-objective optimisation tools are extensively reviewed. Issues concerning the impossibility of predicting the long-term future behaviour of CCeFSs, along with the use of simulators as decision support tools in the quest for sustainable CCeFSs are discussed. The rationale behind the simulator used for this study, along with that of the multi-objective evolutionary tools used as a makeup of Carnico-ICSPEA2 are explained. A description of the San Francisco ranch, its key on-farm sustainability indicators in the form of objective functions, constraints, and decision variables, and the semi-structured, multi-objective, dynamic, constrained management problem posed by the farm manager's planned introduction of a herd of bulls for fattening as a way to increase the fitness of his CCeFS via a better management of the system's feed surpluses and the acquisition of a new pick-up truck are described as a case study. The tested scenario and the experimental design for the simulations are presented as well. Results from using the CoEvoNav as the farm manager's extended phenotype to solve his multi-objective optimisation problem are described, along with the implications for the management and sustainability of the CCeFS. Finally, the approach and tools developed are evaluated, and the progress made in relation to methodological, theoretical, philosophical and conceptual notions is reviewed along with some future topics for research.
242

Γενετικοί αλγόριθμοι στον σχεδιασμό ρομποτικών τροχιών / Genetic algorithms in robot trajectory planning

Νεάρχου, Ανδρέας 10 August 2011 (has links)
Η διατριβή αυτή εξετάζει την χρήση γενετικών αλγορίθμων (ΓΑ) για την επίλυση του προβλήματος του σχεδιασμού κίνησης ρομποτικών συστημάτων τα οποία εκτελούν εργασίες εφοδιαστικής (όπως εργασίες λήψης και μεταφοράς από σημείο σε σημείο, μετακίνησης υλικών επί συνεχούς διαδρομής, κ.α.) στα πλαίσια λειτουργίας τους εντός ενός ευέλικτου συστήματος παραγωγής (ΕΣΠ). Το πρόβλημα του σχεδιασμού κίνησης (ΠΣΚ) είναι ένα υπολογιστικά άλυτο συνδυαστικό πρόβλημα βελτιστοποίησης (έχει αποδειχτεί PSPACE-hard) το οποίο μπορεί να οριστεί ως εξής: «Πως μπορεί ένα ρομπότ να αποφασίσει ποιες κινήσεις πρέπει να αποδώσει προκειμένου να εκτελέσει με επιτυχία επιθυμητές εργασίες στο περιβάλλον εργασίας του;» Προς τον σκοπό αυτό αναπτύχθηκε ένας αριθμός νέων, πρωτότυπων αλγορίθμων εμπνευσμένων από τη Βιολογία των οποίων η απόδοση μετρήθηκε τόσο μέσω πειραμάτων προσομοιωμένων σε υπολογιστή, όσο και σε πραγματικά ρομποτικά περιβάλλοντα στο εργαστήριο του Τμήματος. Συγκρινόμενοι με τις κλασσικές από τη βιβλιογραφία μεθόδους επίλυσης του ΠΣΚ, οι ΓΑ βρέθηκαν ανώτεροι τόσο από πλευράς ποιότητας των λύσεων που παρήγαγαν, όσο και από πλευράς ταχύτητας σύγκλησης (δηλαδή του χρόνου που χρειάστηκαν για τον εντοπισμό αυτών των λύσεων). Επιπρόσθετα, εξετάστηκαν και αντιμετωπίστηκαν με επιτυχία πολύπλοκα προβλήματα κινηματικής που αναφύονται κατά τον σχεδιασμό κίνησης ρομποτικών βραχιόνων σε ένα ΕΣΠ, όπως: Το αντίστροφο κινηματικό πρόβλημα ρομποτικών βραχιόνων με πλεονάζοντες βαθμούς ελευθερίας, η μεγιστοποίηση της επιδεξιότητας του ρομπότ κατά την εκτέλεση των εργασιών του και η παραγωγή με το άκρο εργασίας του ρομπότ ασφαλών και αξιόπιστων τροχιών επί προκαθορισμένων επιθυμητών διαδρομών. Η επίλυση αυτών των προβλημάτων είναι πολύ σημαντική σε πολλές πραγματικές βιομηχανικές εφαρμογές όπως εργασίες συγκόλλησης, βαψίματος ή επάλειψης με ψεκασμό, λείανσης, κ.α. / The use of genetic algorithms (GAs) for the solution of motion planning of robotic systems which perform logistics operations within a flexible manufacturing system (FMS), as well as, logistics tasks in indoors hazardous environments was investigated. Robot motion planning (RMP) is a PSPACE-hard combinatorial problem loosely stated as: How can a robot decide what motions to perform in order to achieve desired tasks in its environment? A number of new biological-inspired approaches were implemented and evaluated on computer simulated environments, as well as, on real industrial environments. In comparison to existing RMP methods, GAs were found superior in terms of both solutions quality and speed of convergence. Furthermore, focusing on RMP of robot manipulators, the proposed approaches tackled with high success difficult kinematics problems such as: the inverse kinematics for robots with redundant degrees of freedom, the maximization of robot’s manipulability, the path following by the robot’s end-effector on demanded trajectories.
243

Análise crítica de aspectos de modelagem matemática no planejamento da expansão a longo prazo de sistemas de transmissão

Escobar Zuluaga, Antonio Hernando [UNESP] 19 December 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-12-19Bitstream added on 2014-06-13T20:21:17Z : No. of bitstreams: 1 escobarzuluaga_ah_dr_ilha.pdf: 1508525 bytes, checksum: b6e7b58056f84298f2b063ead5371a59 (MD5) / Fundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA) / O principal objetivo deste estudo é realizar uma análise de aspectos críticos que surgem na modelagem matemática do problema de planejamento da expansão de sistemas de transmissão a longo prazo, assim como o desenvolvimento de ferramentas computacionais para a prova de novos modelos e metodologias que possam contribuir na solução do problema de planejamento de sistemas de transmissão de energia elétrica considerando as condições dos sistemas modernos de energia elétrica. Com esta metodologia, busca-se obter uma rede de transmissão mais eficiente, e com o menor custo possível, que se adapte as novas exigências produzidas pela introdução da desregulação nos sistemas elétricos. Para isto combinam-se três aspectos: rede futura livre de congestionamento, desplanificação e incerteza na geração e na demanda futura, os quais são manipuladas desde a perspectiva mono-objetivo e multiobjetivo. A possibilidade de eliminar completamente o congestionamento na rede de transmissão é analisada através da inclusão no modelo de todos os cenários de geração factíveis futuros, e não somente alguns cenários como outros estudos. Considerar uma operação sem congestionamento para o futuro está associado a grandes custos de investimento. Para atenuar este grande custo uma opção é incluir a possibilidade de desplanificação e a inclusão dos efeitos das incertezas presentes na geração e na demanda futura no problema de planejamento. O problema de planejamento de sistemas de transmissão é um problema de programação não linear inteira mista (PNLIM) quando é usado o modelo DC. Praticamente todos os algoritmos usados para resolver este problema utilizam uma sub-rotina de programação linear (PL) para resolver problemas de PL resultantes do algoritmo de solucão do problema de planejamento, os quais são denominados... / The main goal for this study is to do an analysis of the critical issues that appear in the mathematical modeling of the transmission system expansion planning problem, when long term is considered. A methodology was developed and a computational tool, to solve the transmission expansion planning in modern electrical systems. With this methodology more efficient electrical networks are obtained, at low investment costs. This is accomplished taking into account three important aspects: open access, or congestion-free planning, uncertainty in demand and generation, and de-planning. The problem is solved using mono-objective and multi-objective methodologies. For this investigation, congestion-free transmission networks should consider all the future and feasible scenarios of generation, unlike some papers, where only a few scenarios are taken in to account. This feature is associated to high investment costs. Lower costs are often obtained by the inclusion of uncertainty in future demand and future generation. The transmission system expansion planning problem is a no-linear integer-mixed programming problem (PNLIM) when the DC model is used. Practically, all the algorithms used in the solution process, for this problem, use one subroutine of linear programming (PL) for solved the PL problems that result during the solution process, in the denominated operative problem. The solution of the PL’s is the part of the problem that requires the biggest computational effort, because during the solution process is necessary to solved thousands or millions of PL’s, for high size problems. the PNLIM problem is solved through the combination of a meta-heuristic method and a linear programming method. The meta-heuristic method solves the denominated investment problem and the PL the denominated operational problem. The transmission planning problem considering multiples generation scenarios... (Complete abstract click electronic access below)
244

Padrões mapeados localmente em multiescala aplicados ao reconhecimento de faces / Multi-scale local maped pattern applied for face recognition

Silva, Eduardo Machado 06 April 2018 (has links)
Submitted by EDUARDO MACHADO SILVA (eduardodz@outlook.com) on 2018-06-02T22:50:24Z No. of bitstreams: 1 Eduardo_Final.pdf: 7020230 bytes, checksum: 17f5f419806417111d44cacbf46f3f0d (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-06-04T16:05:04Z (GMT) No. of bitstreams: 1 silva_em_me_sjrp.pdf: 7020230 bytes, checksum: 17f5f419806417111d44cacbf46f3f0d (MD5) / Made available in DSpace on 2018-06-04T16:05:04Z (GMT). No. of bitstreams: 1 silva_em_me_sjrp.pdf: 7020230 bytes, checksum: 17f5f419806417111d44cacbf46f3f0d (MD5) Previous issue date: 2018-04-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O Reconhecimento facial é uma das tecnologias biométricas mais utilizadas em sistemas automatizados que necessitam garantir a identidade de uma pessoa para acesso autorizado e monitoramento. A grande aceitação do uso da face tem várias vantagens sobre outras tecnologias biométricas: ela é natural, não exige equipamentos sofisticados, a aquisição de dados é baseada em abordagens não invasivas, e pode ser feito a distância, de maneira cooperativa ou não. Embora muitos estudos em reconhecimento facial tenham sido feitos, problemas com variação de iluminação, poses com oclusão facial, expressão facial e envelhecimento ainda são desafios, pois influenciam a performance dos sistemas de reconhecimento facial e motivam o desenvolvimento de novos sistemas de reconhecimento que lidam com esses problemas e sejam mais confiáveis. Este trabalho tem como objetivo avaliar a técnica de Padrões Localmente Mapeados em Multiescala (MSLMP) para o reconhecimento facial. Técnicas baseadas em algoritmos genéticos e processamento de imagens foram usadas para obter melhores resultados. Os resultados obtidos chegam a 100% de acurácia para alguns banco de dados. A base de dados MUCT ´e, em particular, bastante complexa, ela foi criada em 2010 com o objetivo de aumentar a quantidade de bancos de dados disponíveis com alta variação de iluminação, idade, posições e etnias, e por isso, ´e um banco de dados difícil quanto ao reconhecimento automático de faces. Uma nova técnica de processamento baseada na média dos níveis de cinza da base foi desenvolvida. / Facial recognition is one of the most used biometric technologies in automated systems which ensure a person’s identity for authorized access and monitoring. The acceptance of face use has several advantages over other biometric technologies: it is natural, it does not require sophisticated equipment, data acquisition is based on non-invasive approaches, and can it be done remotely, cooperatively or not. Although many facial recognition studies have been done, problems with light variation, facial occlusion, position, expression, and aging are still challenges, because they influence the performance of facial recognition systems and motivate the development of more reliable recognition systems that deal with these problems. This work aim to evaluate the Multi-scale Local Mapped Pattern (MSLMP) technique for the facial recognition. Techniques based on genetic algorithms and image processing were applied to increase the performance of the method. The obtained results reach up to 100% of accuracy for some databases. A very difficult database to deal is the MUCT database which was created in 2010 with aim of providing images with high variation of lighting, age, positions and ethnicities in the facial biometry literature, which makes it a highly difficult base in relation to automated recognition. A new processing technique was developed based on the average gray levels of the images of the database.
245

Subsídios à operação de reservatórios baseada na previsão de variáveis hidrológicas

Bravo, Juan Martín January 2010 (has links)
Diversas atividades humanas são fortemente dependentes do clima e da sua variabilidade, especialmente aquelas relacionadas ao uso da água. A operação integrada de reservatórios com múltiplos usos requer uma série de decisões que definem quanta água deve ser alocada, ao longo do tempo para cada um dos usos, e quais os volumes dos reservatórios a serem mantidos. O conhecimento antecipado das condições climáticas resulta de vital importância para os operadores de reservatórios, pois o insumo dos reservatórios é a vazão dos rios, que por sua vez é dependente de condições atmosféricas e hidrológicas em diferentes escalas de tempo e espaço. A pesquisa trata sobre três importantes elementos de subsídio à tomada de decisão na operação de reservatórios baseada na previsão de variáveis hidrológicas: (a) as previsões de vazão de curto prazo; (b) as previsões de precipitação de longo prazo e (c) as medidas de desempenho das previsões. O reservatório de Furnas, localizado na bacia do Rio Grande, em Minas Gerais, foi selecionado como estudo de caso devido, principalmente, à disponibilidade de previsões quantitativas de chuva e pela importância desse reservatório na região analisada. A previsão de curto prazo de vazão com base na precipitação foi estimada com um modelo empírico (rede neural artificial) e a previsão de precipitação foi obtida pelo modelo regional ETA. Uma metodologia de treinamento e validação da rede neural artificial foi desenvolvida utilizando previsões perfeitas de chuva (considerando a chuva observada como previsão) e utilizando o maior número de dados disponíveis, favorecendo a representatividade dos resultados obtidos. A metodologia empírica alcançou os desempenhos obtidos com um modelo hidrológico conceitual, mostrando-se menos sensitiva aos erros na previsão quantitativa de precipitação nessa bacia. Os resultados obtidos mostraram que as previsões de vazão utilizando modelos empíricos e conceituais e incorporando previsões quantitativas de precipitação são melhores que a metodologia utilizada pelo ONS no local de estudo. A redução dos erros de previsão relativos à metodologia empregada pelo ONS foi em torno de 20% quando usadas previsões quantitativas de precipitação definidas pelo modelo regional ETA e superiores a 50% quando usadas previsões perfeitas de precipitação. Embora essas últimas previsões nunca possam ser obtidas na prática, os resultados sugerem o quanto o incremento do desempenho das previsões quantitativas de chuva melhoraria as previsões de vazão. A previsão de precipitação de longo prazo para a bacia analisada foi também estimada com um modelo empírico de redes neurais artificiais e utilizando índices climáticos como variáveis de entrada. Nesse sentido, foram estimadas previsões de precipitação acumulada no período mais chuvoso (DJF) utilizando índices climáticos associados a fenômenos climáticos, como o El Niño - Oscilação Sul e a Oscilação Decadal do Pacífico, e a modos de variabilidade climática, como a Oscilação do Atlântico Norte e o Modo Anular do Hemisfério Sul. Apesar das redes neurais artificiais terem sido aplicadas em diversos problemas relacionados a hidrometeorologia, a aplicação dessas técnicas na previsão de precipitação de longo prazo é ainda rara. Os resultados obtidos nesse trabalho mostraram que consideráveis reduções dos erros da previsão relativos ao uso apenas da média climatológica como previsão podem ser obtidos com a metodologia utilizada. Foram obtidas reduções dos erros de, no mínimo 50%, e chegando até um valor próximo a 75% nos diferentes testes efetuados no estudo de caso. Uma medida de desempenho da previsão foi desenvolvida baseada no uso de tabelas de contingência e levando em conta a utilidade da previsão. Essa medida de desempenho foi calculada com base nos resultados do uso das previsões por um modelo de operação de reservatório, e não apenas na comparação de vazões previstas e observadas. Nos testes realizados durante essa pesquisa, ficou evidente que não existe uma relação unívoca entre qualidade das previsões e utilidade das previsões. No entanto, em função de comportamentos particulares das previsões, tendências foram encontradas, como por exemplo nos modelos cuja previsão apresenta apenas defasagem. Nesses modelos, a utilidade das previsões tende a crescer na medida que a qualidade das mesmas aumenta. Por fim, uma das grandes virtudes da medida de desempenho desenvolvida nesse trabalho foi sua capacidade de distinguir o desempenho de modelos que apresentaram a mesma qualidade. / Several human activities are strongly dependent on climate and its variability, especially those related to water use. The operation of multi-purpose reservoirs systems defines how much water should be allocated and the reservoir storage volumes to be maintained, over time. Knowing in advance the weather conditions helps the decision making process, as the major inputs to reservoirs are the streamflows, which are dependent on atmospheric and hydrological conditions at different time-space scales. This research deals with three important aspects towards the decision making process of multi-purpose reservoir operation based on forecast of hydrological variables: (a) short-term streamflow forecast, (b) long-range precipitation forecast and (c) performance measures. The Furnas reservoir on the Rio Grande basin was selected as the case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generation system. Short-term streamflow forecasts were estimated by an empirical model (artificial neural network – ANN) and incorporating forecast of rainfall. Quantitative precipitation forecasts (QPFs), defined by the ETA regional model, were used as inputs to the ANN models. A methodology for training and validating the ANN models was developed using perfect precipitation forecasts (i.e., using the observed precipitation as if it was a forecast) and considering the largest number of available samples, in order to increase the representativeness of the results. The empirical methodology achieved the performance obtained with a conceptual hydrological model and seemed to be less sensitive to precipitation forecast error relative to the conceptual hydrological model. Although limited to one reservoir, the results obtained show that streamflow forecasting using empirical and conceptual models and incorporating QPFs performs better than the methodology used by ONS. Reduction in the forecast errors relative to the ONS method was about 20% when using QPFs provided by ETA model, and greater than 50% when using the perfect precipitation forecast. Although the latter can never be achieved in practice, these results suggest that improving QPFs would lead to better forecasts of reservoir inflows. Long-range precipitation forecast was also estimated by an empirical model based on artificial neural networks and using climate indices as input variables. The output variable is the summer (DJF) precipitation over the Furnas watershed. It was estimated using climate indices related to climatic phenomena such as El Niño - Southern Oscillation and the Pacific Decadal Oscillation and modes of climate variability, such as the North Atlantic Oscillation and the Southern Annular Mode. Despite of ANN has been applied in several problems of hydrometeorological areas, the application of such technique for long-range precipitation forecast is still rare. The results obtained demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices. Reductions in the forecast errors achieved by using only the climatological mean as forecast were considerable, being at least of 50% and reaching values close to 75% in several tests. A performance measure based on the use of contingency tables was developed taking into account the utility of the forecast. This performance measure was calculated based on the results of the use of the forecasts by a reservoir operation model, and not only by comparing streamflow observed and forecast. The performed tests show that there is no unequivocal relationship between quality and utility of the forecasts. However, when the forecast has a particular behavior, trends were found in the relationship between utility and quality of the forecast, such as models that generate streamflow forecast with lags in comparison to the observed values. In these models, the utility of the forecasts tends to enhance as the quality increases. Finally, the ability to distinguish the performance of forecast models having similar quality was one of the main merits of the performance measure developed in this research.
246

Hybridation d’algorithmes évolutionnaires et de méthodes d’intervalles pour l’optimisation de problèmes difficiles / Hybridization of evolutionary algorithms and interval-based methods for optimizing difficult problems

Vanaret, Charlie 27 January 2015 (has links)
L’optimisation globale fiable est dédiée à la recherche d’un minimum global en présence d’erreurs d’arrondis. Les seules approches fournissant une preuve numérique d’optimalité sont des méthodes d’intervalles qui partitionnent l’espace de recherche et éliminent les sous-espaces qui ne peuvent contenir de solution optimale. Ces méthodes exhaustives, appelées branch and bound par intervalles, sont étudiées depuis les années 60 et ont récemment intégré des techniques de réfutation et de contraction, issues des communautés d’analyse par intervalles et de programmation par contraintes. Il est d’une importance cruciale de calculer i) un encadrement précis de la fonction objectif et des contraintes sur un sous-domaine ; ii) une bonne approximation (un majorant) du minimum global. Les solveurs de pointe sont généralement des méthodes intégratives : ils invoquent sur chaque sous-domaine des algorithmes d’optimisation locale afin d’obtenir une bonne approximation du minimum global. Dans ce document, nous nous intéressons à un cadre coopératif combinant des méthodes d’intervalles et des algorithmes évolutionnaires. Ces derniers sont des algorithmes stochastiques faisant évoluer une population de solutions candidates (individus) dans l’espace de recherche de manière itérative, dans l’espoir de converger vers des solutions satisfaisantes. Les algorithmes évolutionnaires, dotés de mécanismes permettant de s’échapper des minima locaux, sont particulièrement adaptés à la résolution de problèmes difficiles pour lesquels les méthodes traditionnelles peinent à converger. Au sein de notre solveur coopératif Charibde, l’algorithme évolutionnaire et l’algorithme sur intervalles exécutés en parallèle échangent bornes, solutions et espace de recherche par passage de messages. Une stratégie couplant une heuristique d’exploration géométrique et un opérateur de réduction de domaine empêche la convergence prématurée de la population vers des minima locaux et évite à l’algorithme évolutionnaire d’explorer des sous-espaces sous-optimaux ou non réalisables. Une comparaison de Charibde avec des solveurs de pointe (GlobSol, IBBA, Ibex) sur une base de problèmes difficiles montre un gain de temps d’un ordre de grandeur. De nouveaux résultats optimaux sont fournis pour cinq problèmes multimodaux pour lesquels peu de solutions, même approchées, sont connues dans la littérature. Nous proposons une application aéronautique dans laquelle la résolution de conflits est modélisée par un problème d’optimisation sous contraintes universellement quantifiées, et résolue par des techniques d’intervalles spécifiques. Enfin, nous certifions l’optimalité de la meilleure solution connue pour le cluster de Lennard-Jones à cinq atomes, un problème ouvert en dynamique moléculaire. / Reliable global optimization is dedicated to finding a global minimum in the presence of rounding errors. The only approaches for achieving a numerical proof of optimality in global optimization are interval-based methods that interleave branching of the search-space and pruning of the subdomains that cannot contain an optimal solution. The exhaustive interval branch and bound methods have been widely studied since the 1960s and have benefitted from the development of refutation methods and filtering algorithms, stemming from the interval analysis and interval constraint programming communities. It is of the utmost importance: i) to compute sharp enclosures of the objective function and the constraints on a given subdomain; ii) to find a good approximation (an upper bound) of the global minimum. State-of-the-art solvers are generally integrative methods, that is they embed local optimization algorithms to compute a good upper bound of the global minimum over each subspace. In this document, we propose a cooperative framework in which interval methods cooperate with evolutionary algorithms. The latter are stochastic algorithms in which a population of individuals (candidate solutions) iteratively evolves in the search-space to reach satisfactory solutions. Evolutionary algorithms, endowed with operators that help individuals escape from local minima, are particularly suited for difficult problems on which traditional methods struggle to converge. Within our cooperative solver Charibde, the evolutionary algorithm and the intervalbased algorithm run in parallel and exchange bounds, solutions and search-space via message passing. A strategy combining a geometric exploration heuristic and a domain reduction operator prevents premature convergence toward local minima and prevents the evolutionary algorithm from exploring suboptimal or unfeasible subspaces. A comparison of Charibde with state-of-the-art solvers based on interval analysis (GlobSol, IBBA, Ibex) on a benchmark of difficult problems shows that Charibde converges faster by an order of magnitude. New optimality results are provided for five multimodal problems, for which few solutions were available in the literature. We present an aeronautical application in which conflict solving between aircraft is modeled by an universally quantified constrained optimization problem, and solved by specific interval contractors. Finally, we certify the optimality of the putative solution to the Lennard-Jones cluster problem for five atoms, an open problem in molecular dynamics.
247

Moderní trendy v oboru počítačová fyzika / Modern trends in the area of computer physics

SURYNEK, Radek January 2013 (has links)
The theme of the thesis is to make a list few fundamental modern methods which can be used in computerized physics. The thesis describes parallel computing, neural networks,genetic algorithms, fuzzy logic. Every chapter include theoretical description, simplified mathematical expression, proposals of technical solution. Applications are briefly mentioned here too. The printed matter is completed with a few simple examples. The closing part of the thesis acquired information about these methods and outlines their future development.
248

Subsídios à operação de reservatórios baseada na previsão de variáveis hidrológicas

Bravo, Juan Martín January 2010 (has links)
Diversas atividades humanas são fortemente dependentes do clima e da sua variabilidade, especialmente aquelas relacionadas ao uso da água. A operação integrada de reservatórios com múltiplos usos requer uma série de decisões que definem quanta água deve ser alocada, ao longo do tempo para cada um dos usos, e quais os volumes dos reservatórios a serem mantidos. O conhecimento antecipado das condições climáticas resulta de vital importância para os operadores de reservatórios, pois o insumo dos reservatórios é a vazão dos rios, que por sua vez é dependente de condições atmosféricas e hidrológicas em diferentes escalas de tempo e espaço. A pesquisa trata sobre três importantes elementos de subsídio à tomada de decisão na operação de reservatórios baseada na previsão de variáveis hidrológicas: (a) as previsões de vazão de curto prazo; (b) as previsões de precipitação de longo prazo e (c) as medidas de desempenho das previsões. O reservatório de Furnas, localizado na bacia do Rio Grande, em Minas Gerais, foi selecionado como estudo de caso devido, principalmente, à disponibilidade de previsões quantitativas de chuva e pela importância desse reservatório na região analisada. A previsão de curto prazo de vazão com base na precipitação foi estimada com um modelo empírico (rede neural artificial) e a previsão de precipitação foi obtida pelo modelo regional ETA. Uma metodologia de treinamento e validação da rede neural artificial foi desenvolvida utilizando previsões perfeitas de chuva (considerando a chuva observada como previsão) e utilizando o maior número de dados disponíveis, favorecendo a representatividade dos resultados obtidos. A metodologia empírica alcançou os desempenhos obtidos com um modelo hidrológico conceitual, mostrando-se menos sensitiva aos erros na previsão quantitativa de precipitação nessa bacia. Os resultados obtidos mostraram que as previsões de vazão utilizando modelos empíricos e conceituais e incorporando previsões quantitativas de precipitação são melhores que a metodologia utilizada pelo ONS no local de estudo. A redução dos erros de previsão relativos à metodologia empregada pelo ONS foi em torno de 20% quando usadas previsões quantitativas de precipitação definidas pelo modelo regional ETA e superiores a 50% quando usadas previsões perfeitas de precipitação. Embora essas últimas previsões nunca possam ser obtidas na prática, os resultados sugerem o quanto o incremento do desempenho das previsões quantitativas de chuva melhoraria as previsões de vazão. A previsão de precipitação de longo prazo para a bacia analisada foi também estimada com um modelo empírico de redes neurais artificiais e utilizando índices climáticos como variáveis de entrada. Nesse sentido, foram estimadas previsões de precipitação acumulada no período mais chuvoso (DJF) utilizando índices climáticos associados a fenômenos climáticos, como o El Niño - Oscilação Sul e a Oscilação Decadal do Pacífico, e a modos de variabilidade climática, como a Oscilação do Atlântico Norte e o Modo Anular do Hemisfério Sul. Apesar das redes neurais artificiais terem sido aplicadas em diversos problemas relacionados a hidrometeorologia, a aplicação dessas técnicas na previsão de precipitação de longo prazo é ainda rara. Os resultados obtidos nesse trabalho mostraram que consideráveis reduções dos erros da previsão relativos ao uso apenas da média climatológica como previsão podem ser obtidos com a metodologia utilizada. Foram obtidas reduções dos erros de, no mínimo 50%, e chegando até um valor próximo a 75% nos diferentes testes efetuados no estudo de caso. Uma medida de desempenho da previsão foi desenvolvida baseada no uso de tabelas de contingência e levando em conta a utilidade da previsão. Essa medida de desempenho foi calculada com base nos resultados do uso das previsões por um modelo de operação de reservatório, e não apenas na comparação de vazões previstas e observadas. Nos testes realizados durante essa pesquisa, ficou evidente que não existe uma relação unívoca entre qualidade das previsões e utilidade das previsões. No entanto, em função de comportamentos particulares das previsões, tendências foram encontradas, como por exemplo nos modelos cuja previsão apresenta apenas defasagem. Nesses modelos, a utilidade das previsões tende a crescer na medida que a qualidade das mesmas aumenta. Por fim, uma das grandes virtudes da medida de desempenho desenvolvida nesse trabalho foi sua capacidade de distinguir o desempenho de modelos que apresentaram a mesma qualidade. / Several human activities are strongly dependent on climate and its variability, especially those related to water use. The operation of multi-purpose reservoirs systems defines how much water should be allocated and the reservoir storage volumes to be maintained, over time. Knowing in advance the weather conditions helps the decision making process, as the major inputs to reservoirs are the streamflows, which are dependent on atmospheric and hydrological conditions at different time-space scales. This research deals with three important aspects towards the decision making process of multi-purpose reservoir operation based on forecast of hydrological variables: (a) short-term streamflow forecast, (b) long-range precipitation forecast and (c) performance measures. The Furnas reservoir on the Rio Grande basin was selected as the case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generation system. Short-term streamflow forecasts were estimated by an empirical model (artificial neural network – ANN) and incorporating forecast of rainfall. Quantitative precipitation forecasts (QPFs), defined by the ETA regional model, were used as inputs to the ANN models. A methodology for training and validating the ANN models was developed using perfect precipitation forecasts (i.e., using the observed precipitation as if it was a forecast) and considering the largest number of available samples, in order to increase the representativeness of the results. The empirical methodology achieved the performance obtained with a conceptual hydrological model and seemed to be less sensitive to precipitation forecast error relative to the conceptual hydrological model. Although limited to one reservoir, the results obtained show that streamflow forecasting using empirical and conceptual models and incorporating QPFs performs better than the methodology used by ONS. Reduction in the forecast errors relative to the ONS method was about 20% when using QPFs provided by ETA model, and greater than 50% when using the perfect precipitation forecast. Although the latter can never be achieved in practice, these results suggest that improving QPFs would lead to better forecasts of reservoir inflows. Long-range precipitation forecast was also estimated by an empirical model based on artificial neural networks and using climate indices as input variables. The output variable is the summer (DJF) precipitation over the Furnas watershed. It was estimated using climate indices related to climatic phenomena such as El Niño - Southern Oscillation and the Pacific Decadal Oscillation and modes of climate variability, such as the North Atlantic Oscillation and the Southern Annular Mode. Despite of ANN has been applied in several problems of hydrometeorological areas, the application of such technique for long-range precipitation forecast is still rare. The results obtained demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices. Reductions in the forecast errors achieved by using only the climatological mean as forecast were considerable, being at least of 50% and reaching values close to 75% in several tests. A performance measure based on the use of contingency tables was developed taking into account the utility of the forecast. This performance measure was calculated based on the results of the use of the forecasts by a reservoir operation model, and not only by comparing streamflow observed and forecast. The performed tests show that there is no unequivocal relationship between quality and utility of the forecasts. However, when the forecast has a particular behavior, trends were found in the relationship between utility and quality of the forecast, such as models that generate streamflow forecast with lags in comparison to the observed values. In these models, the utility of the forecasts tends to enhance as the quality increases. Finally, the ability to distinguish the performance of forecast models having similar quality was one of the main merits of the performance measure developed in this research.
249

Mineração de dados usando programação genética

Duarte, Mariana de Luna Freire 23 August 2012 (has links)
Made available in DSpace on 2015-05-14T12:36:39Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1608529 bytes, checksum: 06fa4bcadb445d4cf1a5c20f034c323b (MD5) Previous issue date: 2012-08-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Data mining has become an important activity for decision-making in large and small companies since it allows the extraction of relevant and non-trivial information so that corrections and adjustment in administrative and economic strategies could be selected. Consequently, an increase in the geographical data storage is seen in such a way that conventional data mining cannot carry out the extraction of knowledge from a high dimension database. According to the current literature, there are few tools capable of extracting knowledge from geographical data, mainly if the database is made of conventional (numeral and textual) and geographical (point, line and polygon) data. The aim of this study is to present a new algorithm for spatial data mining DMGP using the two types of data to carry out the information extraction from a determined base. This algorithm is based on the DMGeo algorithm which also seeks to extract knowledge from the two types of data. These algorithms are based on Genetic Programming and were developed to obtain classification rules of patterns existing in the numeral and geographical attributes. To obtain a better performance for the DMGeo, the use of meta-heuristic GRASP and ILS in the performance of DMGP algorithm was proposed to improve the individuals from the generated population . GRASP and ILS were used to generate the initial population and disturb some individuals aiming at finding better solutions. / A mineração de dados tornou-se uma importante atividade para o processo de tomada de decisão para grandes ou pequenas corporações, pois a partir dela é possível extrair informações relevantes e não triviais de forma que correções e ajustes em estratégias econômicas e administrativas possam ser selecionadas. Assim, vê-se um aumento no armazenamento de dados geográficos, de tal maneira que a mineração de dados convencionais não suporta realizar a extração de conhecimento em um banco de dados de elevada dimensão. De acordo com a literatura atual, poucas ferramentas capazes de extrair conhecimento a partir de dados geográficos são encontradas, principalmente, quando a base de dados é composta por dados convencionais (numéricos e textuais) e geográficos (ponto, linha e polígono). Este trabalho tem como objetivo principal apresentar um novo algoritmo, chamado DMGP, para a atividade de mineração de dados espaciais utilizando os dois tipos de dados para realizar a extração de informações de uma determinada base. O algoritmo em questão tem como base o algoritmo DMGeo que, por sua vez, também visa extrair conhecimento a partir dos dois tipos de dados. Estes algoritmos são baseados na Programação Genética e foram desenvolvidos a fim de obter regras de classificação de padrões existentes nos atributos numéricos e geográficos. Visando obter um melhor desempenho para o DMGeo, foi proposto a utilização das meta-heuríticas GRASP e ILS no funcionamento do algoritmo DMGP para aperfeiçoar os indivíduos das populações geradas. Tais meta-heurísticas foram usadas para gerar a população incial e para realizar uma perturbação de alguns indivíduos, com o intuito de encontrar soluções melhores.
250

Estudo e aplicações da evolução diferencial / A study and applications of differential evolution

Oliveira, Giovana Trindade da Silva 29 August 2006 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / In the last few decades, the application of optimization in engineering problems has grown considerably. There are various optimization methods and the performance of each one depends on the type of problem considered. The natural methods, which are based on probabilistic rules, have been widely studied. The purpose of this work is to present a detailed study of the natural optimization method called Differential Evolution and its strategies. A theoretical formulation is presented. In this work, a revision of Genetic Algorithms and Simulated Annealing is made. These techniques are employed to compare their results to those obtained with Differential Evolution. Classic mathematical functions and some problems of engineering are used in order to verify the efficiency of the studied technique. The Differential Evolution is applied with effectiveness in multi-objective optimization problems with and without the presence of constraints including two complex robotic problems. / Nas últimas décadas, a aplicação de otimização em problemas de engenharia tem crescido consideravelmente. Existem muitos métodos de otimização e o desempenho de cada um deles depende do tipo de problema considerado. Os métodos naturais, que se baseiam em regras probabilísticas, têm sido amplamente estudados. O objetivo deste trabalho é apresentar um estudo detalhado do método de otimização natural denominado Evolução Diferencial e suas estratégias, apresentando sua fundamentação teórica. Neste trabalho é realizada uma revisão de Algoritmos Genéticos e Recozimento Simulado. Estas técnicas são utilizadas para comparar os resultados por elas obtidos com os calculados aplicando Evolução Diferencial. Para verificar a eficiência do método estudado, são utilizados funções matemáticas clássicas e alguns problemas de engenharia. A Evolução Diferencial é aplicada com eficiência em problemas de otimização multi-objetivo, na presença ou não de restrições, incluindo dois problemas complexos em robótica. / Mestre em Engenharia Mecânica

Page generated in 0.1279 seconds