• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 53
  • 53
  • 22
  • 21
  • 18
  • 16
  • 15
  • 15
  • 15
  • 12
  • 11
  • 9
  • 9
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Competitive co-evolution of sensory-motor systems

Buason, Gunnar January 2002 (has links)
<p>A recent trend in evolutionary robotics and artificial life research is to maximize self-organization in the design of robotic systems, in particular using artificial evolutionary techniques, in order to reduce the human designer bias. This dissertation presents experiments in competitive co-evolutionary robotics that integrate and extend previous work on competitive co-evolution of neural robot controllers in a predator-prey scenario with work on the ‘co-evolution’ of robot morphology and control systems. The focus here is on a systematic investigation of tradeoffs and interdependencies between morphological parameters and behavioral strategies through a series of predator-prey experiments in which increasingly many aspects are subject to self-organization through competitive co-evolution. The results show that there is a strong interdependency between morphological parameters and behavioral strategies evolved, and that the competitive co-evolutionary process was able to find a balance between and within these two aspects. It is therefore concluded that competitive co-evolution has great potential as a method for the automatic design of robotic systems.</p>
42

Detached tool use in evolutionary robotics : Evolving tool use skills

Schäfer, Boris January 2006 (has links)
<p>This master thesis investigates the principal capability of artificial evolution to produce tool use behavior in adaptive agents, excluding the application of life-time learning or adaptation mechanisms. Tool use is one aspect of complex behavior that is expected from autonomous agents acting in real-world environments. In order to achieve tool use behavior an agent needs to identify environmental objects as potential tools before it can use the tools in a problem-solving task. Up to now research in robotics has focused on life-time learning mechanisms in order to achieve this. However, these techniques impose great demands on resources, e.g. in terms of memory or computational power. All of them have shown limited results with respect to a general adaptivity. One might argue that even nature does not present any kind of omni-adaptive agent. While humans seem to be a good example of natural agents that master an impressive variety of life conditions and environments (at least from a human perspective, other examples are spectacular survivability observations of octopuses, scorpions or various viruses) even the most advanced engineering approaches can hardly compete with the simplest life-forms in terms of adaptation. This thesis tries to contribute to engineering approaches by promoting the application of artificial evolution as a complementing element with the presentation of successful pioneering experiments. The results of these experiments show that artificial evolution is indeed capable to render tool use behavior at different levels of complexity and shows that the application of artificial evolution might be a good complement to life-time approaches in order to create agents that are able to implicitly extract concepts and display tool use behavior. The author believes that off-loading at least parts of the concept retrieval process to artificial evolution will reduce resource efforts at life-time when creating autonomous agents with complex behavior such as tool use. This might be a first step towards the vision of a higher level of autonomy and adaptability. Moreover, it shows the demand for an experimental verification of commonly accepted limits between qualities of learned and evolved tool use capabilities.</p>
43

Adaptive behaviour in evolving robots

Tyska Carvalho, Jônata January 2017 (has links)
In this thesis, the evolution of adaptive behaviour in artificial agents is studied. More specifically, two types of adaptive behaviours are studied: articulated and cognitive ones. Chapter 1 presents a general introduction together with a brief presentation of the research area of this thesis, its main goals and a brief overview of the experimental studies done, the results and conclusions obtained. On chapter 2, I briefly present some promising methods that automatically generate robot controllers and/or body plans and potentially could help in the development of adaptive robots. Among these methods I present in details evolutionary robotics, a method inspired on natural evolution, and the biological background regarding adaptive behaviours in biological organisms, which provided inspiration for the studies presented in this thesis. On chapter 3, I present a detailed study regarding the evolution of articulated behaviours, i.e., behaviours that are organized in functional sub-parts, and that are combined and used in a sequential and context-dependent way, regardless if there is a structural division in the robot controller or not. The experiments performed with a single goal task, a cleaning task, showed that it is possible to evolve articulated behaviours even in this condition and without structural division of the robot controller. Also the analysis of the results showed that this type of integrated modular behaviours brought performance advantages compared to structural divided controllers. Analysis of robots' behaviours helped to clarify that the evolution of this type of behaviour depended on the characteristics of the neural network controllers and the robot's sensorimotor capacities, that in turn defined the capacity of the robot to generate opportunity for actions, which in psychological literature is often called affordances. In chapter 4, a study seeking to understand the role of reactive strategies in the evolution of cognitive solutions, i.e. those capable of integrating information over time encoding it on internal states that will regulate the robot's behaviour in the future, is presented. More specifically I tried to understand whether the existence of sub-optimal reactive strategies prevent the development of cognitive solutions, or they can promote the evolution of solutions capable of combining reactive strategies and the use of internal information for solving a response delayed task, the double t-maze. The results obtained showed that reactive strategies capable of offloading cognitive work to the agent/environmental relation can promote, rather than prevent the evolution of solutions relying on internal information. The analysis of these results clarified how these two mechanisms interact producing a hybrid superior and robust solution for the delayed response task.
44

Comparação entre controladores fuzzy e neural desenvolvidos via simulação e transferidos para ambientes reais no âmbito da robótica evolutiva / Comparison between fuzzy and neural controllers developed by simulation and transferred to real environments in the scope of evolutionary robotics

Farias, Weslley Alves 26 July 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / One of the greatest limitations of Evolutionary Robotics is when transfering controllers evolved by simulation to real environments. This limitation is mainly caused by model simplifications and difficulties to represent dynamic characteristics, whether from the robot or the environment. And this results in performance degradation of the evolved controller after the transfer, a phenomenon called reality gap. Because this problem is a limitation for practical and complex applications of evolutionary robotics, many solutions have been proposed since the 90s. Until now, most of the research use control strategies based on artificial neural networks because they allow algorithms to be evolved with less designer influence. On the other hand, fuzzy logic can also be used for the development of controllers in the field of evolutionary robotics because it also allows emulating human intelligence. Therefore, this dissertation investigates whether fuzzy control systems are more robust than neural control systems, both optimized by a genetic algorithm in simulation and later transferred to a real robot in physical environment in the task of autonomous navigation while avoiding obstacles. The results show that in the analyzed conditions, fuzzy controllers present better transfer characteristics, mainly considering the smoothness of the executed trajectory, and an equivalent performance, when compared with neural controllers. / Uma das grandes limitações da Robótica Evolutiva diz respeito à transferência de controladores evoluídos por simulação e transferidos ao ambiente real. Tal limitação devese, sobretudo, a simplificações de modelo e dificuldades na representação de características dinâmicas, tanto do robô quanto do ambiente, e isso resulta na queda de desempenho do controlador evoluído após a transferência, fenômeno denominado de reality gap. Muitas soluções vêm sendo propostas desde a década de 90, em virtude deste problema ser uma limitação para aplicações práticas e complexas da robótica evolutiva. Até o momento, a maioria dos trabalhos de pesquisa desenvolvidos utiliza estratégias de controle baseadas em redes neurais artificiais por permitirem que algoritmos possam ser evoluídos com menor influência do projetista. Por outro lado, a lógica fuzzy também pode ser usada para o desenvolvimento de controladores no âmbito da robótica evolutiva, pois também permite emular a inteligência humana. Portanto, nesta dissertação é investigado se sistemas de controle fuzzy são mais robustos que sistemas de controle neurais, ambos otimizados por um algoritmo genético em simulação e posteriormente transferidos para um robô real em ambiente físico na tarefa de navegação autônoma evitando obstáculos. Como resultado, obteve-se que nas condições analisadas, os controladores fuzzy apresentaram uma melhor transferência, com destaque para a suavidade da trajetória executada, e um desempenho equivalente, quando comparados com controladores neurais. / São Cristóvão, SE
45

Sobre cognição, adaptação e homeostase : uma analise de ferramentas computacionais bioinspiradas aplicadas a navegação autonoma de robos / On cognition, adaptation and homeostasis : analysis and synthesis of bio-inspired computational tools applied to robot autonomous navigation

Moioli, Renan Cipriano 09 October 2008 (has links)
Orientadores: Fernando Jose Von Zuben, Patricia Amancio Vargas / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T19:08:31Z (GMT). No. of bitstreams: 1 Moioli_RenanCipriano_M.pdf: 1774485 bytes, checksum: fbe8aa9cf8be0ba5310723711c91235c (MD5) Previous issue date: 2008 / Resumo: Este trabalho tem como objetivos principais estudar, desenvolver e aplicar duas ferramentas computacionais bio-inspiradas em navegação autônoma de robôs. A primeira delas é representada pelos Sistemas Classificadores com Aprendizado, sendo que utilizou-se uma versão da proposta original, baseada em energia, e uma versão baseada em precisão. Adicionalmente, apresenta-se uma análise do processo de evolução das regras de inferência e da população final obtida. A segunda ferramenta trata de um modelo denominado sistema homeostático artificial evolutivo, composto por duas redes neurais artificiais recorrentes do tipo NSGasNets e um sistema endócrino artificial. O ajuste dos parâmetros do sistema é feito por meio de evolução, reduzindo-se a necessidade de codificação e parametrização a priori. São feitas análises de suas peculiaridades e de sua capacidade de adaptação. A motivação das duas propostas está no emprego conjunto de evolução e aprendizado, etapas consideradas fundamentais para a síntese de sistemas complexos adaptativos e modelagem computacional de processos cognitivos. Os experimentos visando validar as propostas envolvem simulação computacional em ambientes virtuais e implementações em um robô real do tipo Khepera II. / Abstract: The objectives of this work are to study, develop and apply two bio-inspired computational tools in robot autonomous navigation. The first tool is represented by Learning Classifier Systems, using the strength-based and the accuracy-based models. Additionally, the rule evolution mechanisms and the final evolved populations are analyzed. The second tool is a model called evolutionary artificial homeostatic system, composed of two NSGasNet recurrent artificial neural networks and an artificial endocrine system. The parameters adjustment is made by means of evolution, reducing the necessity of a priori coding and parametrization. Analysis of the system's peculiarities and its adaptation capability are made. The motivation of both proposals is on the concurrent use of evolution and learning, steps considered fundamental for the synthesis of complex adaptive systems and the computational modeling of cognitive processes. The experiments, which aim to validate both proposals, involve computational simulation in virtual environments and implementations on real Khepera II robots. / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
46

Detached tool use in evolutionary robotics : Evolving tool use skills

Schäfer, Boris January 2006 (has links)
This master thesis investigates the principal capability of artificial evolution to produce tool use behavior in adaptive agents, excluding the application of life-time learning or adaptation mechanisms. Tool use is one aspect of complex behavior that is expected from autonomous agents acting in real-world environments. In order to achieve tool use behavior an agent needs to identify environmental objects as potential tools before it can use the tools in a problem-solving task. Up to now research in robotics has focused on life-time learning mechanisms in order to achieve this. However, these techniques impose great demands on resources, e.g. in terms of memory or computational power. All of them have shown limited results with respect to a general adaptivity. One might argue that even nature does not present any kind of omni-adaptive agent. While humans seem to be a good example of natural agents that master an impressive variety of life conditions and environments (at least from a human perspective, other examples are spectacular survivability observations of octopuses, scorpions or various viruses) even the most advanced engineering approaches can hardly compete with the simplest life-forms in terms of adaptation. This thesis tries to contribute to engineering approaches by promoting the application of artificial evolution as a complementing element with the presentation of successful pioneering experiments. The results of these experiments show that artificial evolution is indeed capable to render tool use behavior at different levels of complexity and shows that the application of artificial evolution might be a good complement to life-time approaches in order to create agents that are able to implicitly extract concepts and display tool use behavior. The author believes that off-loading at least parts of the concept retrieval process to artificial evolution will reduce resource efforts at life-time when creating autonomous agents with complex behavior such as tool use. This might be a first step towards the vision of a higher level of autonomy and adaptability. Moreover, it shows the demand for an experimental verification of commonly accepted limits between qualities of learned and evolved tool use capabilities.
47

Competitive co-evolution of sensory-motor systems

Buason, Gunnar January 2002 (has links)
A recent trend in evolutionary robotics and artificial life research is to maximize self-organization in the design of robotic systems, in particular using artificial evolutionary techniques, in order to reduce the human designer bias. This dissertation presents experiments in competitive co-evolutionary robotics that integrate and extend previous work on competitive co-evolution of neural robot controllers in a predator-prey scenario with work on the ‘co-evolution’ of robot morphology and control systems. The focus here is on a systematic investigation of tradeoffs and interdependencies between morphological parameters and behavioral strategies through a series of predator-prey experiments in which increasingly many aspects are subject to self-organization through competitive co-evolution. The results show that there is a strong interdependency between morphological parameters and behavioral strategies evolved, and that the competitive co-evolutionary process was able to find a balance between and within these two aspects. It is therefore concluded that competitive co-evolution has great potential as a method for the automatic design of robotic systems.
48

Emergence of internal representations in evolutionary robotics : influence of multiple selective pressures / Émergence de représentations internes en robotique évolutioniste en présence de pressions de sélection multiples

Ollion, Charles 18 October 2013 (has links)
Pas de résumé en français / Pas de résumé en anglais
49

Reading with Robots: A Platform to Promote Cognitive Exercise through Identification and Discussion of Creative Metaphor in Books

Parde, Natalie 08 1900 (has links)
Maintaining cognitive health is often a pressing concern for aging adults, and given the world's shifting age demographics, it is impractical to assume that older adults will be able to rely on individualized human support for doing so. Recently, interest has turned toward technology as an alternative. Companion robots offer an attractive vehicle for facilitating cognitive exercise, but the language technologies guiding their interactions are still nascent; in elder-focused human-robot systems proposed to date, interactions have been limited to motion or buttons and canned speech. The incapacity of these systems to autonomously participate in conversational discourse limits their ability to engage users at a cognitively meaningful level. I addressed this limitation by developing a platform for human-robot book discussions, designed to promote cognitive exercise by encouraging users to consider the authors' underlying intentions in employing creative metaphors. The choice of book discussions as the backdrop for these conversations has an empirical basis in neuro- and social science research that has found that reading often, even in late adulthood, has been correlated with a decreased likelihood to exhibit symptoms of cognitive decline. The more targeted focus on novel metaphors within those conversations stems from prior work showing that processing novel metaphors is a cognitively challenging task, for young adults and even more so in older adults with and without dementia. A central contribution arising from the work was the creation of the first computational method for modelling metaphor novelty in word pairs. I show that the method outperforms baseline strategies as well as a standard metaphor detection approach, and additionally discover that incorporating a sentence-based classifier as a preliminary filtering step when applying the model to new books results in a better final set of scored word pairs. I trained and evaluated my methods using new, large corpora from two sources, and release those corpora to the research community. In developing the corpora, an additional contribution was the discovery that training a supervised regression model to automatically aggregate the crowdsourced annotations outperformed existing label aggregation strategies. Finally, I show that automatically-generated questions adhering to the Questioning the Author strategy are comparable to human-generated questions in terms of naturalness, sensibility, and question depth; the automatically-generated questions score slightly higher than human-generated questions in terms of clarity. I close by presenting findings from a usability evaluation in which users engaged in thirty-minute book discussions with a robot using the platform, showing that users find the platform to be likeable and engaging.
50

Pareto multi-objective evolution of legged embodied organisms

Teo, Jason T. W., Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2003 (has links)
The automatic synthesis of embodied creatures through artificial evolution has become a key area of research in robotics, artificial life and the cognitive sciences. However, the research has mainly focused on genetic encodings and fitness functions. Considerably less has been said about the role of controllers and how they affect the evolution of morphologies and behaviors in artificial creatures. Furthermore, the evolutionary algorithms used to evolve the controllers and morphologies are pre-dominantly based on a single objective or a weighted combination of multiple objectives, and a large majority of the behaviors evolved are for wheeled or abstract artifacts. In this thesis, we present a systematic study of evolving artificial neural network (ANN) controllers for the legged locomotion of embodied organisms. A virtual but physically accurate world is used to simulate the evolution of locomotion behavior in a quadruped creature. An algorithm using a self-adaptive Pareto multi-objective evolutionary optimization approach is developed. The experiments are designed to address five research aims investigating: (1) the search space characteristics associated with four classes of ANNs with different connectivity types, (2) the effect of selection pressure from a self-adaptive Pareto approach on the nature of the locomotion behavior and capacity (VC-dimension) of the ANN controller generated, (3) the effciency of the proposed approach against more conventional methods of evolutionary optimization in terms of computational cost and quality of solutions, (4) a multi-objective approach towards the comparison of evolved creature complexities, (5) the impact of relaxing certain morphological constraints on evolving locomotion controllers. The results showed that: (1) the search space is highly heterogeneous with both rugged and smooth landscape regions, (2) pure reactive controllers not requiring any hidden layer transformations were able to produce sufficiently good legged locomotion, (3) the proposed approach yielded competitive locomotion controllers while requiring significantly less computational cost, (4) multi-objectivity provided a practical and mathematically-founded methodology for comparing the complexities of evolved creatures, (5) co-evolution of morphology and mind produced significantly different creature designs that were able to generate similarly good locomotion behaviors. These findings attest that a Pareto multi-objective paradigm can spawn highly beneficial robotics and virtual reality applications.

Page generated in 0.3378 seconds