• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 18
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 131
  • 131
  • 18
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Ultrasonic Methods for Quantitative Carotid Plaque Characterization

Widman, Erik January 2016 (has links)
Cardiovascular diseases are the leading causes of death worldwide and improved diagnostic methods are needed for early intervention and to select the most suitable treatment for patients. Currently, carotid artery plaque vulnerability is typically determined by visually assessing ultrasound B-mode images, which is influenced by user-subjectivity. Since plaque vulnerability is correlated to the mechanical properties of the plaque, quantitative techniques are needed to estimate plaque stiffness as a surrogate for plaque vulnerability, which would reduce subjectivity during plaque assessment. The work in this thesis focused on three noninvasive ultrasound-based techniques to quantitatively assess plaque vulnerability and measure arterial stiffness. In Study I, a speckle tracking algorithm was validated in vitro to assess strain in common carotid artery (CCA) phantom plaques and thereafter applied in vivo to carotid atherosclerotic plaques where the strain results were compared to visual assessments by experienced physicians. In Study II, hard and soft CCA phantom plaques were characterized with shear wave elastography (SWE) by using phase and group velocity analysis while being hydrostatically pressurized followed by validating the results with mechanical tensile testing. In Study III, feasibility of assessing the stiffness of simulated plaques and the arterial wall with SWE was demonstrated in an ex vivo setup in small porcine aortas used as a human CCA model. In Study IV, SWE and pulse wave imaging (PWI) were compared when characterizing homogeneous CCA soft phantom plaques. The techniques developed in this thesis have demonstrated potential to characterize carotid artery plaques. The results show that the techniques have the ability to noninvasively evaluate the mechanical properties of carotid artery plaques, provide additional data when visually assessing B-mode images, and potentially provide improved diagnoses for patients suffering from cerebrovascular diseases. / <p>Doctoral thesis in medical technology and medical sciences</p><p>QC 20160921</p>
92

MAPPING BRAIN CIRCUITS IN HEALTH AND DISEASE

Qiuyu Wu (6803957) 02 August 2019 (has links)
<p>Intricate neural circuits underlie all brain functions. However, these neural circuits are highly dynamic. The ability to change, or the plasticity, of the brain has long been demonstrated at the level of isolated single synapses under artificial conditions. Circuit organization and brain function has been extensively studied by correlating neuronal activity with information input. The primary visual cortex has become an important model brain region for the study of sensory processing, in large part due to the ease of manipulating visual stimuli. Much has been learned from studies of visual cortex focused on understanding the signal-processing of visual inputs within neural circuits. Many of these findings are generalizable to other sensory systems and other regions of cortex. However, few studies have directly demonstrated the orchestrated neural-circuit plasticity occurring during behavioral experience. </p> <p>It is vital to measure the precise circuit connectivity and to quantitatively characterize experience-dependent circuit plasticity to understand the processes of learning and memory formation. Moreover, it is important to study how circuit connectivity and plasticity in neurological and psychiatric disease states deviates from that in healthy brains. By understanding the impact of disease on circuit plasticity, it may be possible to develop therapeutic interventions to alleviate significant neurological and psychiatric morbidity. In the case of neural trauma or ischemic injury, where neurons and their connections are lost, functional recovery relies on neural-circuit repair. Evaluating whether neurons are reconnected into the local circuitry to re-establish the lost connectivity is crucial for guiding therapeutic development.</p> <p>There are several major technical hurdles for studies aiming to quantify circuit connectivity. First, the lack of high-specificity circuit stimulation methods and second, the low throughput of the gold-standard patch-clamp technique for measuring synaptic events have limited progress in this area. To address these problems, we first engineered the patch-clamp experimental system to automate the patching process, increasing the throughput and consistency of patch-clamp electrophysiology while retaining compatibility of the system for experiments in <i>ex vivo </i>brain slices. We also took advantage of optogenetics, the technology that enables control of neural activity with light through ectopic expression of genetically encoded photo-sensitive channels in targeted neuronal populations. Combining optogenetic stimulation of pre-synaptic axonal terminals and whole-cell patch-clamp recording of post-synaptic currents, we mapped the distribution and strength of synaptic connections from a specific group of neurons onto a single cell. With the improved patch-clamp efficiency using our automated system, we efficiently mapped a significant number of neurons in different experimental conditions/treatments. This approach yielded large datasets, with sufficient power to make meaningful comparisons between groups.</p> <p>Using this method, we first studied visual experience-dependent circuit plasticity in the primary visual cortex. We measured the connectivity of local feedback and recurrent neural projections in a Fragile X syndrome mouse model and their healthy counterparts, with or without a specific visual experience. We found that repeated visual experience led to increased excitatory drive onto inhibitory interneurons and intrinsically bursting neurons in healthy animals. Potentiation at these synapses was absent or abnormal in Fragile X animals. Furthermore, recurrent excitatory input onto regular spiking neurons within the same layer remained stable in healthy animals but was depressed in Fragile X animals following repeated visual experience. These results support the hypothesis that visual experience leads to selective circuit plasticity which may underlie the mechanism of visual learning. This circuit plasticity process is impaired in a mouse model of Fragile X syndrome. </p> <p>In a separate study, in collaboration with the laboratory of Dr. Gong Chen, we applied the circuit-mapping method to measure the effect of a novel brain-repair therapy on functional circuit recovery following ischemic injury, which locally kills neurons and creates a glial scar. By directly reprogramming astrocytes into neurons within the region of the glial scar, this gene-therapy technology aims to restore the local circuit and thereby dramatically improve behavioral function after devastating neurological injury. We found that direct reprogramming converted astrocytes into neurons, and importantly, we found that these newly reprogrammed neurons integrated appropriately into the local circuit. The reprogramming also improved connections between surviving endogenous neurons at the injury site toward normal healthy levels of connectivity. Connections formed onto the newly reprogrammed neurons spontaneously remodeled, the process of which resembled neural development. By directly demonstrating functional connectivity of newly reprogrammed neurons, our results suggest that this direct reprogramming gene-therapy technology holds significant promise for future clinical application to restore circuit connectivity and neurological function following brain injury.</p>
93

Optimisation of Chemotherapy Treatment in Advanced Colorectal Cancer

Berglund, Åke January 2002 (has links)
<p>Colorectal cancer is one of the most common malignant diseases in Sweden – more than 5000 new cases are diagnosed each year. The overall five-year survival is about 60% and in cases of recurrence the prognosis is poor.</p><p>In a phase III study in advanced colorectal cancer the response rate was doubled when 5-FU was given as a bolus injection versus as a short infusion. The toxicity was similar and time to progression was longer in the injection group. However, overall survival was not significantly different. Dose-effect relationships of 5-FU were studied in another phase III study recruiting 312 patients. A decrease from 500 mg/m<sup>2</sup> to 400 mg/m<sup>2</sup> worsened the treatment results. A low incidence of severe toxicity was seen in both groups. An increase to 600 mg/m<sup>2</sup> worsened the toxicity without any improvement of the results.</p><p>A cytotoxic drug sensitivity test in different tumour types, mainly gastrointestinal cancer, poorly predicted treatment outcome in a phase II study.</p><p>The conventional Nordic Flv regimen was split in a phase I/II trial. An escalation of dose was possible and the response rate was 20%.</p><p>Thymidylate synthase (TS) and the gene expression of p53 were investigated by immunohistochemical technique in the primary tumours of 132 patients. None of the markers predicted the later palliative chemotherapy result. However, TS significantly predicted time to recurrence.</p><p>Serum markers were analysed before and during FLv treatment to early predict outcomes among 87 patients. TPS is promising, both as a predictive marker before start of treatment and after a short period of treatment. In the same setting, CEA had lower predictive value. S-VEGF and S-bFGF did not yield any prognostic information of later outcome. In all studies B-haemoglobin values, performance status and subjective response were strong markers, both for prediction of objective response and for survival.</p>
94

Development of <i>in vitro</i> and <i>ex vivo</i> positron-emitting tracer techniques and their application to neurotrauma

Sihver, Sven January 2000 (has links)
<p>The use of positron-emitting tracers has been extended beyond tomographic facilities in the last few years, giving rise to a general positron-emitting tracing technique. The methodological part of the present thesis involved the evaluation of the performance of storage phosphor (SP) plates, with tracers labeled with high-energy, short-lived, positron-emitting radionuclides, using homogenized tissue specimens and autoradiography with frozen brain sections. The SP plates showed superior sensitivity and a linear response over a wide radioactivity range. Autoradioradiography provided reliable results due to (a) adequate sensitivity for low radioactivity concentration, b) an excellent linear range, and (c) satisfactory resolution. Though equilibration time of receptor-ligand interaction was dependent upon section thickness, quantification was possib with thinner sections.</p><p>An initial finding using frozen section autoradiography of rat brain and spinal cord showed preferential binding of [<sup>11</sup>C]4-NMPB, a muscarinic acetylcholine (mACh) receptor antagonist, to the M4 subtype of mACh receptors. Further work to ascertain this specificity, by use of binding studies on cell membranes from CHO-K1 cells expressing individual subtypes of human mACh receptors, suggested lack of subtype selectivity. With respect to the possible cliinical use in glutamatergic neuropathology, [<sup>11</sup>C]cyano-dizocilpine, as a potential PET tracer for the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, was studied. The <i>in vivo</i> visualization of specific binding could not be achieved, though <i>in vitro</i> binding demonstrated good specificity and preferential binding to the activated for of the NMDA receptors.</p><p>The use of the glucose analogue [<sup>18</sup>F]fluorodeoxyglucose (FDG) to study glucose utilization was evaluated in experimental traumatic brain injury (TBI). A trauma-induced increased uptake of FDG was seen, whereas the uptake of [1-<sup>14</sup>C]glucose remained unchanged. This discrepancy might be due to the increased postraumatic affinity of FDG for the endothelial glucose transporter proteins and/or to the hexokinase enzyme. [<sup>11</sup>C]Cyano-dizocilpine, [<sup>11</sup>C]4-NMPB, and [<sup>11</sup>C]flumazenil were utilized in autoradiography to evaluate changes in NMDA, mACh, and GABA<sub>A</sub> receptors, espectively, in experimental TBI. Observations showed a global decrease in the binding potential BP) of (i) [<sup>11</sup>C]cyano-dizocilpine acutely and 12 hrs after TBI, and (ii) of [<sup>11</sup>C]4-NMPB at 12 hrs after TBI, and (iii) a decrease in the BP of [<sup>11</sup>C]flumazenil in the cortex and hippocampus ipsilateral to the site of injury. The demonstrated changes in receptor binding after TBI are indicative of a widely dissipated effect of TBI on the particular neurotransmitter receptor systems as compared with what would be expected from FDG studies after TBI, i.e., a local disturbed neurotransmission.</p>
95

C5a Receptor Expression in Severe Sepsis and Septic Shock

Furebring, Mia January 2005 (has links)
<p>In patients with sepsis, the activation of the cascade systems, for example the complement system with the generation of C5a, is followed by a state of immunosuppression with impaired bactericidal capacity caused by suppression of the neutrophil granulocytes. To inhibit the C5a-induced systemic inflammatory and the following anti-inflammatory responses, different anti-C5a strategies have been successful in experimental models of sepsis. In animals and in healthy volunteers after injection of lipopolysaccharide (LPS), an up-regulation of the C5a receptor (C5aR) has been reported. Before designing clinical studies, it was of importance to increase the knowledge of C5a and C5aR regulation in humans. </p><p>At the time when the diagnosis of severe sepsis or septic shock can be established clinically, granulocyte C5aR expression, analysed by flow cytometer, was shown to be reduced, whereas monocyte C5aR expression was unchanged. There was a correlation between granulocyte C5aR expression and the severity of disease, as measured by the APACHE II score. </p><p><i>Ex vivo</i> incubation of whole blood with LPS resulted in a reduction in granulocyte C5aR expression. Such a reduction was not found in isolated cells, indicating that the effect was mediated via plasma factors, such as C5a, IL-8 and TNF-α which all were shown to reduce C5aR expression <i>ex vivo</i>.</p><p>Although there was a trend between chemotaxis, as measured by migration in a modified Boyden chamber, and C5aR expression on granulocytes from patients with severe sepsis or septic shock or from healthy individuals, the correlation failed to reach statistical significance.</p><p>It is concluded that granulocyte C5aR expression is affected by several plasma factors and that a reduction is clinically evident at the time of the sepsis diagnosis. Reduced granulocyte C5aR expression is associated with an impaired chemotaxis but does not alone limit the chemotactic response.</p>
96

Development of in vitro and ex vivo positron-emitting tracer techniques and their application to neurotrauma

Sihver, Sven January 2000 (has links)
The use of positron-emitting tracers has been extended beyond tomographic facilities in the last few years, giving rise to a general positron-emitting tracing technique. The methodological part of the present thesis involved the evaluation of the performance of storage phosphor (SP) plates, with tracers labeled with high-energy, short-lived, positron-emitting radionuclides, using homogenized tissue specimens and autoradiography with frozen brain sections. The SP plates showed superior sensitivity and a linear response over a wide radioactivity range. Autoradioradiography provided reliable results due to (a) adequate sensitivity for low radioactivity concentration, b) an excellent linear range, and (c) satisfactory resolution. Though equilibration time of receptor-ligand interaction was dependent upon section thickness, quantification was possib with thinner sections. An initial finding using frozen section autoradiography of rat brain and spinal cord showed preferential binding of [11C]4-NMPB, a muscarinic acetylcholine (mACh) receptor antagonist, to the M4 subtype of mACh receptors. Further work to ascertain this specificity, by use of binding studies on cell membranes from CHO-K1 cells expressing individual subtypes of human mACh receptors, suggested lack of subtype selectivity. With respect to the possible cliinical use in glutamatergic neuropathology, [11C]cyano-dizocilpine, as a potential PET tracer for the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, was studied. The in vivo visualization of specific binding could not be achieved, though in vitro binding demonstrated good specificity and preferential binding to the activated for of the NMDA receptors. The use of the glucose analogue [18F]fluorodeoxyglucose (FDG) to study glucose utilization was evaluated in experimental traumatic brain injury (TBI). A trauma-induced increased uptake of FDG was seen, whereas the uptake of [1-14C]glucose remained unchanged. This discrepancy might be due to the increased postraumatic affinity of FDG for the endothelial glucose transporter proteins and/or to the hexokinase enzyme. [11C]Cyano-dizocilpine, [11C]4-NMPB, and [11C]flumazenil were utilized in autoradiography to evaluate changes in NMDA, mACh, and GABAA receptors, espectively, in experimental TBI. Observations showed a global decrease in the binding potential BP) of (i) [11C]cyano-dizocilpine acutely and 12 hrs after TBI, and (ii) of [11C]4-NMPB at 12 hrs after TBI, and (iii) a decrease in the BP of [11C]flumazenil in the cortex and hippocampus ipsilateral to the site of injury. The demonstrated changes in receptor binding after TBI are indicative of a widely dissipated effect of TBI on the particular neurotransmitter receptor systems as compared with what would be expected from FDG studies after TBI, i.e., a local disturbed neurotransmission.
97

Optimisation of Chemotherapy Treatment in Advanced Colorectal Cancer

Berglund, Åke January 2002 (has links)
Colorectal cancer is one of the most common malignant diseases in Sweden – more than 5000 new cases are diagnosed each year. The overall five-year survival is about 60% and in cases of recurrence the prognosis is poor. In a phase III study in advanced colorectal cancer the response rate was doubled when 5-FU was given as a bolus injection versus as a short infusion. The toxicity was similar and time to progression was longer in the injection group. However, overall survival was not significantly different. Dose-effect relationships of 5-FU were studied in another phase III study recruiting 312 patients. A decrease from 500 mg/m2 to 400 mg/m2 worsened the treatment results. A low incidence of severe toxicity was seen in both groups. An increase to 600 mg/m2 worsened the toxicity without any improvement of the results. A cytotoxic drug sensitivity test in different tumour types, mainly gastrointestinal cancer, poorly predicted treatment outcome in a phase II study. The conventional Nordic Flv regimen was split in a phase I/II trial. An escalation of dose was possible and the response rate was 20%. Thymidylate synthase (TS) and the gene expression of p53 were investigated by immunohistochemical technique in the primary tumours of 132 patients. None of the markers predicted the later palliative chemotherapy result. However, TS significantly predicted time to recurrence. Serum markers were analysed before and during FLv treatment to early predict outcomes among 87 patients. TPS is promising, both as a predictive marker before start of treatment and after a short period of treatment. In the same setting, CEA had lower predictive value. S-VEGF and S-bFGF did not yield any prognostic information of later outcome. In all studies B-haemoglobin values, performance status and subjective response were strong markers, both for prediction of objective response and for survival.
98

C5a Receptor Expression in Severe Sepsis and Septic Shock

Furebring, Mia January 2005 (has links)
In patients with sepsis, the activation of the cascade systems, for example the complement system with the generation of C5a, is followed by a state of immunosuppression with impaired bactericidal capacity caused by suppression of the neutrophil granulocytes. To inhibit the C5a-induced systemic inflammatory and the following anti-inflammatory responses, different anti-C5a strategies have been successful in experimental models of sepsis. In animals and in healthy volunteers after injection of lipopolysaccharide (LPS), an up-regulation of the C5a receptor (C5aR) has been reported. Before designing clinical studies, it was of importance to increase the knowledge of C5a and C5aR regulation in humans. At the time when the diagnosis of severe sepsis or septic shock can be established clinically, granulocyte C5aR expression, analysed by flow cytometer, was shown to be reduced, whereas monocyte C5aR expression was unchanged. There was a correlation between granulocyte C5aR expression and the severity of disease, as measured by the APACHE II score. Ex vivo incubation of whole blood with LPS resulted in a reduction in granulocyte C5aR expression. Such a reduction was not found in isolated cells, indicating that the effect was mediated via plasma factors, such as C5a, IL-8 and TNF-α which all were shown to reduce C5aR expression ex vivo. Although there was a trend between chemotaxis, as measured by migration in a modified Boyden chamber, and C5aR expression on granulocytes from patients with severe sepsis or septic shock or from healthy individuals, the correlation failed to reach statistical significance. It is concluded that granulocyte C5aR expression is affected by several plasma factors and that a reduction is clinically evident at the time of the sepsis diagnosis. Reduced granulocyte C5aR expression is associated with an impaired chemotaxis but does not alone limit the chemotactic response.
99

Runx2-Genetically Engineered Dermal Fibroblasts for Orthopaedic Tissue Repair

Phillips, Jennifer Elizabeth 29 October 2007 (has links)
Tissue engineering has emerged as a promising alternative to conventional orthopaedic grafting therapies. The general paradigm for this approach, in which phenotype-specific cells and/or bioactive growth factors are integrated into polymeric matrices, has been successfully applied in recent years toward the development of bone, ligament, and cartilage tissues in vitro and in vivo. Despite these advances, an optimal cell source for skeletal tissue repair and regeneration has not been identified. Furthermore, the lack of robust, functional orthopaedic tissue interfaces, such as the bone-ligament enthesis, severely limits the integration and biological performance of engineered tissue substitutes. This works aims to address these limitations by spatially controlling the genetic modification and differentiation of fibroblasts into a mineralizing osteoblastic phenotype within three-dimensional polymeric matrices. The overall objective of this project was to investigate transcription factor-based gene therapy strategies for the differentiation of fibroblasts into a mineralizing cell source for orthopaedic tissue engineering applications. Our central hypothesis was that fibroblasts genetically engineered to express Runx2 via conventional and biomaterial-mediated ex vivo gene transfer approaches will differentiate into a mineralizing osteoblastic phenotype. We have demonstrated that a combination of retroviral Runx2 overexpression and glucocorticoid hormone treatment synergistically induces osteoblastic differentiation and biological mineral deposition in primary dermal fibroblasts cultured in monolayer. We report for the first time that glucocorticoids induce osteoblastic differentiation in this model system by modulating the phosphorylation state of a negative regulatory serine residue (Ser125) on Runx2 through an MKP-1-dependent mechanism. Furthermore, we utilized these Runx2-genetically engineered fibroblasts to create mineralized templates for bone repair in vitro and in vivo. Finally, we engineered a heterogeneous bone-soft tissue interface with a novel biomaterial-mediated gene transfer approach. Overall, these results are significant toward the ultimate goal of regenerating complex, higher-order orthopaedic grafting templates which mimic the cellular and microstructural characteristics of native tissue. Cellular therapies based on primary dermal fibroblasts would be particularly beneficial for patients with a compromised ability to recruit progenitors to the sight of injury as result of traumatic injury, radiation treatment, or osteodegenerative disease.
100

Ex vivo Binding of the Agonist PET Radiotracer [11C]-(+)-PHNO to Dopamine D2/D3 Receptors in Rat Brain: Lack of Correspondence to the D2 Recepor Two-affinity-state Model

McCormick, Patrick N. 18 February 2011 (has links)
The dopamine D2 receptor exists in vitro in two states of agonist affinity: a high-affinity state mediating dopamine’s physiological effects, and a physiologically-inert low-affinity state. Our primary goal was to determine the in vivo relevance of this two-affinity-state model for the agonist PET radiotracer [11C]-(+)-PHNO, developed for measurement of the D2 high-affinity state. Our second goal was to characterize the regional D2 versus D3 pharmacology of [3H]-(+)-PHNO binding and assess its utility for measuring drug occupancy at both receptor subtypes. Using ex vivo dual-radiotracer experiments in conscious rats, we showed that, contrary to the two-affinity-state model, the binding of [11C]-(+)-PHNO and the antagonist [3H]-raclopride were indistinguishably inhibited by D2 partial agonist (aripiprazole), indirect agonist (amphetamine) and full agonist ((-)-NPA) pretreatment. Furthermore, ex vivo [11C]-(+)-PHNO binding was unaffected by treatments that increase in vitro high-affinity state density (chronic amphetamine, ethanol-withdrawal), whereas unilateral 6-OHDA lesion, which increases total D2 receptor expression, similarly increased the ex vivo binding of [11C]-(+)-PHNO and [3H]-raclopride. These results do not support the in vivo validity of the two-affinity-state model, suggesting instead a single receptor state for [11C]-(+)-PHNO and [3H]-raclopride in conscious rat. Importantly, we also demonstrated that the increased amphetamine-sensitivity of the agonist radiotracers [11C]-(+)-PHNO and [11C]-(-)-NPA, commonly seen in isoflurane-anaesthetized animals and cited as evidence for the two-affinity-state model, is due to the confounding effects of anaesthesia. Using in vitro and ex vivo autoradiography in rat and the D3 receptor-selective drug SB277011, we found that [3H]-(+)-PHNO binding in striatum and cerebellum lobes 9 and 10 was due exclusively to D2 and D3 receptor binding, respectively, but in other extra-striatal regions to a mix of the two receptor subtypes. Surprisingly, the D3 contribution to [3H]-(+)-PHNO binding was greater ex vivo than in vitro. Also surprising, several antipsychotic drugs, at doses producing 80% D2 occupancy, produced insignificant (olanzapine, risperidone, haloperidol) or small (clozapine, ~35%) D3 occupancy, despite similarly occupying both receptor subtypes in vitro. These data reveal a significant discrepancy between in vitro and ex vivo measures of dopamine receptor binding and suggest that the D3 occupancy is not necessary for the therapeutic effect of antispychotic drugs.

Page generated in 0.7011 seconds