Spelling suggestions: "subject:"exchange reactions"" "subject:"cxchange reactions""
21 |
Structural characterization and enhanced detection of flavonoids by electrospray ionization mass spectrometry and molecular modelingZhang, Junmei, Brodbelt, Jennifer S., January 2004 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Jennifer S. Brodbelt. Vita. Includes bibliographical references. Also available from UMI.
|
22 |
Calculated Equilibrium Constants for Isotopic Exchange Reactions Involving Sulfur-Containing CompoundsTudge, Allan 05 1900 (has links)
<p> Recent investigations by H. G. Thode, J. Macnamara and C. Collins have shown that the S^32/S^34 ratio in natural sulfur-containing compounds varies by as much as five percent. These wide-spread variations suggest that fractionation of the sulfur isotopes occurs in natural processes due to differences in the chemical properties of isotopic molecules. In order to determine the magnitude of the effects that could be expected, partition function ratios for isotopic molecules containing sulfur and equilibrium constants for many isotopic exchange reactions involving sulfur have been calculated by methods of statistical mechanics. The results of these calculations are discussed. </p> / Thesis / Master of Science (MSc)
|
23 |
Hysteresis phenomena of ferromagnetic bodies using the nonlocal exchange energy modelKeane, Michael K. 06 June 2008 (has links)
We examine the relaxed minimization problem for ferromagnetic bodies using the nonlocal exchange energy model. We show that the model possesses a wide range of phenomena including hysteresis, hysteresis subloops, Barkhausen effect, and demagnetization. The results are in three parts.
First, we examine analytically the problem of a unit sphere of ferromagnetic material. We show that when the exchange energy is zero we duplicate De Simone's model which has a wide range of measure-valued minimizers. As the exchange energy grows our model stabilizes at the saturated solutions of the Stoner-Wohlfarth model. Here, the measure-valued minimizers are eliminated.
Next, we examine numerically the problem of a body composed of several unit spheres of ferromagnetic material. We show that a constrained problem that focuses on the resultant field energy produces results similar to the unconstrained problem with considerable savings in time and resources.
Finally, we examine numerically the constrained problem on a moderately large body. It is shown that the constrained problem contains all the hysteresis phenomena mentioned above. / Ph. D.
|
24 |
Sites of Reactivity During Ligand-Exchange Reactions in Octahedral Group VIB Metal CarbonylsAsali, Khalil Jamil 12 1900 (has links)
The site of initial metal-carbonyl bond-breaking during ligand-exchange reactions in a series of octahedral metal carbonyls of the type (L2)M(CO)4 (M = Cr, Mo, W; L2 = diphos, phen, dipy) has been determined employing infrared spectroscopy and Fourier transform nuclear magnetic resonance spectroscopy. The results of this study reveal, for all metal carbonyl complexes of the type mentioned above, that loss of CO occurs exclusively at an axial position (cis to the bidentate ligand, I^)• The dynamic nature of the five-coordinate intermediates, such as (diphos)Mo(CO)3, (phen)M(CO)3 (M = Cr, Mo, W), and (dipy)Cr(CO)3, which are generated in solution upon CO dissociation, is reported and discussed. The results of this investigation confirm that these intermediates are fluxional on the time scale of CO-exchange process. A mechanism which describes the site of initial metal-carbonyl bond-breaking and the fluxionality of the five-coordinate intermediate during ligand-exchange reactions in the complexes (L2)M(CO)4 is proposed. A kinetic study of reactions of W(CO)6 with pseudo-halide anions (NCS-, NCO-, CN-) has been initiated. The results indicate that these reactions proceed via a bimolecular path, which involves initial attack of the pseudo-halide anion at a carbonyl carbon of W(CO)6,
|
25 |
Thermal and Flash Photolysis Studies of Ligand-Exchange Reactions of Substituted Metal Carbonyl Complexes of Cr and MoAwad, Hani H. (Hani Hanna) 05 1900 (has links)
Thermal and flash photolysis studies of ligand-substitution reactions of cis-(pip)(L)M(CO)_4 by L' (pip = piperidine; L, L' = CO, phosphines, phosphites; M = Cr, Mo) implicate square-pyramidal [(L)M(CO)_4], in which L occupies a coordination site in the equatorial plane, as the reactive species. In chlorobenzene (= CB) solvent, the predominant species formed after flash photolysis and a steady-state intermediate for the thermal reaction is cis—[(CB)(L)M(CO)_4], for which rates of CB-dissociation increase with increasing steric demands of coordinated L. Rates of CB-dissociation from trans-[(CB)(L)M(CO)_4] intermediates, formed after photolysis but not thermally, exhibit no observable dependence on the steric properties of the coordinated L.
|
26 |
Structural characterization and enhanced detection of flavonoids by electrospray ionization mass spectrometry and molecular modelingZhang, Junmei, 1970 01 August 2011 (has links)
Not available / text
|
27 |
Characterization of a newly identified kidney Anion Exchanger 1 mutant, C479WWoods, Naomi Rebecca. January 2010 (has links)
Thesis (M.Sc.)--University of Alberta, 2010. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Department of Physiology. Title from pdf file main screen (viewed on March 20, 2010). Includes bibliographical references.
|
28 |
Isotopic exchange reactions related to Friedel-Crafts reactions I. Stannic chloride and hydrogen chloride. II. Stannic chloride and organic chlorides. III. Hydrogen chloride and aromatic hydrocarbons /Howald, Reed Anderson, January 1955 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1955. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 171-180).
|
29 |
Nanocrystalline Gold Arylthiolate MoleculesPrice, Ryan Cameron 25 August 2006 (has links)
This research focuses on generating, isolating, and characterizing nanophase gold clusters with diameters below two nanometers. In this size regime, the metal cores exhibit electronic and optical properties very different from those of colloidal and bulk gold, arising from quantum size confinement. The unoccupied molecular orbitals of the cores are known to accept electrons, analogous to a capacitor, but with discrete electrochemical potentials. This work describes the novel production of gold clusters with structurally rigid benzenethiolate bound to the surface, rather than typically used alkanethiolates.
The Aux(benzenethiolate)y clusters are anionic and charged balanced by tetraoctylammonium cations. They are enriched in ~1.5 nm diameter cores, compared to a dominance of 1.7 nm cores when alkanethiols are used during synthesis. The Aux(benzenethiolate)y clusters are more likely to form bulk crystals and possess enhanced electrochemistry relative to Aux(alkylthiolate)y clusters. They are characterized by x-ray diffraction, carbon and proton NMR, FTIR, optical spectroscopy, mass spectrometry, elemental analysis, and thermogravimetric analysis.
The etching of clusters in the presence of hydrogen peroxide and excess benzenethiol to yield smaller 1.1 nm clusters is reported for the first time in this work. These 1.1 nm clusters have a rich optical spectrum with clear electronic transitions at room temperature and orient spontaneously when deposited from solution. This oxidative etching process was applied to alkanethiolate clusters, converting ~2.0 nm polydisperse clusters into smaller clusters. This offers the potential to produce smaller gold clusters with more available charge states and may allow increase the types of thiols that can be bound to the surface of gold monolayer protected clusters (MPCs), known also as quantum dots.
The use of the bulky thiol, tert-butylmercaptan to produce 1.5 nm core gold clusters is also reported, indicating sterically hindered alkanethiols can play a role in limiting the size of Aux(alkylthiolate)y clusters. These clusters were characterized by x-ray diffraction, proton NMR, FTIR, optical spectroscopy, and mass spectrometry. The clusters are potentially useful for thiolate exchange reactions to produce new types of Aux(thiolate)y clusters.
|
30 |
Modifications chimiques, mécanismes de structuration et propriétés des matériaux à base de gluten / Chemical modifications, structuration mechanisms and properties of gluten-based materialsBorne, Mathilde 14 December 2012 (has links)
Les matériaux agroressourcés à base de gluten de blé présentent des propriétés mécaniques qui ne leurs permettent pas de concurrencer celles des plastiques usuels issus de la pétrochimie. Les objectifs de ce travail de thèse visent (i) à améliorer les propriétés d'élongation et de résistance des matériaux gluten pour atteindre celles des polymères courants et (ii) à maîtriser la réactivité du gluten au cours de l'élaboration des matériaux afin de pouvoir utiliser les procédés connus de la plasturgie. L'enjeu scientifique est de comprendre la réactivité du gluten sous l'effet des traitements thermomécaniques et les mécanismes régissant les propriétés mécaniques des matériaux. Les fonctions réactives visées sont les thiols/disulfures qui assurent la réticulation des protéines du gluten. Nous avons testé l'effet de bloqueurs de thiols de type maléimide mono- et bifonctionnels, de nature, de taille et d'hydrophobicité variées. Ces derniers ont éventuellement été bloqués par réaction de Diels-Alder. L'ajout d'additifs de type bismaléimide bloqué par réaction de Diels-Alder permet de différer la réticulation à l'étape de thermoformage et de substituer aux liens covalents habituels des liens thioéthers. L'ajout de cet additif permet de doubler l'élongation à la rupture du matériau gluten mais entraîne la chute de la rigidité. L'effet de l'ajout de molécules bis- et tétrathiols a également été testé. Ces additifs ont permis d'augmenter par plus de 1,5 fois l'élasticité des matériaux gluten. Une analyse multi-échelle (moléculaire par FTIR, macromoléculaire par SEC et macroscopique par test de traction ; le tout complété par une analyse DMTA) de la structure et des propriétés a montré que l'absence de gain en élasticité était due au maintien d'une organisation structurale majoritaire en hélices-α, qui est le propre du gluten natif. La création d'interactions interprotéiques par feuillets-β a été identifiée comme seule responsable du gain d'élasticité des matériaux, la formation d'agrégats protéiques par le biais de liaisons disulfures ou thioéthers ne jouant qu'un rôle secondaire. Un mécanisme réactionnel mettant en avant les conditions qui assurent la participation de toutes les classes de protéines du gluten à la constitution du réseau protéique est discuté. Deux nouvelles voies prometteuses de mélange avec du caoutchouc et copolymérisation par « grafting from » ont été explorées et restent à approfondir. / Wheat gluten can be used to make biomaterials. Nevertheless their mechanical properties are not competitive with commonly used petroleum-based plastics. The purposes of this work aim at (i) improving strain and strength properties of gluten-based materials in order to reach those of common polymers and (ii) controlling gluten reactivity during material process in order to use already well-known processes for manufacturing plastics. The scientific stakes are to understand gluten reactivity during thermo-mechanical treatments and the mechanisms which govern mechanical properties of materials. The reactive functions of gluten are thiols/disulfides which are responsible of gluten proteins crosslinking. The effect of thiol blocker molecules such as mono and bismaleimide of various nature, sizes and hydrophobicity was tested. These molecules were eventually blocked by Diels-Alder reactions. The addition of bismaleimide blocked by Diels-Alder reaction enables to postpone the crosslinking to the thermo-molding step and also to substitute disulfides bonds for thioether bonds. The addition of this additive succeeds in doubling the strain at break of gluten-based material but leads to a decrease of the stiffness. The effect of addition of bis- and tetrathiol molecules was also considered as tests. These additives lead to increase by 1.5 times the elasticity of gluten-based materials. A multi-scale study (molecular scale by FTIR, macromolecular scale by SEC and macroscopic scale by tensile test, all supported by DTMA analysis) of the structure and properties showed that a predominant conformation with α-helices which is the case of native gluten, leads to a decrease of elasticity. The formation of β-sheets interproteic interactions was identified as the only responsible of elasticity increases of the material. The formation of proteic aggregates with disulfide and thioeter bonds only plays a secondary role. A reaction mechanism highlighting the conditions that ensure the participation of all types of gluten proteins in the gluten network upbuilding is discussed. Two new promising ways of rubber melt and copolymerization by “grafting from” technique were explored and need to be further developed.
|
Page generated in 0.1242 seconds