Spelling suggestions: "subject:"fluten dde blé"" "subject:"fluten dee blé""
1 |
Etude des propriétés diélectriques à haute fréquence d'un polymère végétal : le gluten de blé, et utilisation comme biocapteur de marqueurs environnementaux de la qualité des aliments dans des systèmes RFID passifs / Study of dielectric properties at high frequency of plant polymer : the case study of wheat gluten proteins to be used as sensing materials of environmental markers of food quality in passive RFID systemsBibi, Fabien 29 October 2015 (has links)
L’identification par radio fréquence (RFID) connectée à des capteurs est une technologie grandissante pour les emballages intelligents. Ces travaux de thèse ont porté sur l’étude des propriétés électriques (impédance et capacité) et diélectriques (permittivité diélectrique et pertes) des protéines notamment le gluten de blé, en fonction des molécules environnementales connues comme des marqueurs de dégradation des denrées alimentaires. Les effets de ces molécules (eau, dioxyde de carbone et éthanol) sur les propriétés électriques et diélectriques du gluten de blé ont été analysés. Dans le but d’effectuer des mesures dans des conditions optimales, plusieurs étapes ont été mises en place:Le développement d’une méthode, permettant une haute exposition du gluten de blé à l’atmosphère environnant, afin d’acquérir des mesures électriques et diélectriques du gluten de blé dans des conditions contrôlées de température, vapeurs et de gaz ;L’analyse des effets des vapeurs et gaz sur les propriétés diélectriques du gluten de blé, ainsi que la détermination de différents paramètres tels que la sensibilité et l’hystérésis, propres aux capteurs ;L’enduction du gluten de blé sur une étiquette RFID, testée en fonction de l’humidité et dans des conditions réelles d’utilisation. Les effets sur la distance de lecture de l’étiquette RFID ont été analysés.Les résultats obtenus sont prometteurs au vu des modifications de la permittivité diélectrique et des pertes, indiquant une modification structurelle de la protéine, qui aurait un impact sur la réponse RFID. La permittivité diélectrique a été augmenté de 5.01±0.06 à 9.22±0.06, de 7.81±0.07 à 12.02±0.03 et de 6.66±0.01 à 11.77±0.01, pour une croissance de 20% à 95% de l’humidité relative, de 0% à 40% de dioxyde de carbone et de 0% à 0.1% d’éthanol respectivement, aboutissant à une sensibilité de 26.70±0.13fF/%RH,31.38±0.06fF/%CO2 et 25.50±0.05pF/%éthanol pour les 3 vapeurs et gaz. Les propriétés diélectriques du gluten et sa sensibilité aux vapeurs et aux gaz offrent de nouvelles perspectives sur la conception de capteurs à bas coûts et écologiques, connectés à des étiquettes RFID passives pour les emballages intelligents et pour le contrôle de la chaîne alimentaire. / Radio frequency identification (RFID) interfaced to sensors is a growing technology for intelligent packaging. The present thesis work is based on the study of the electrical (impedance and capacitance) and dielectric properties (dielectric permittivity and loss) of proteins principally wheat gluten, as a function of environmental molecules known as markers of food degradation. The impacts of those molecules (water, carbon dioxide and ethanol), usually found in food packages, on the electrical and dielectric properties of wheat glutenhave been investigated. In order to perform measurements in the optimum conditions, several steps have been set up:The development of a methodology, allowing a high exposure of wheat gluten to the surrounding atmosphere, offering the possibility to perform electrical measurements and identify dielectric properties of wheat gluten in controlled conditions of vapors and gases ;Analyzing the impact of vapors and gases on the dielectric properties of wheat gluten, and the determination of several parameters such as sensitivity and hysteresis, specific to sensors ;The coating of wheat gluten on a RFID tag, tested as a function relative humidity and in real conditions of use. The subsequent impacts on the reading range of the RFID tag have been analyzed.The results obtained are promising according to modifications of the dielectricpermittivity and loss, indicating a structural modification of the protein, sought to have an impact on the RFID response. The dielectric permittivity was increased from 5.01±0.06 to 9.22±0.06, from 7.81±0.07 to 12.02±0.03 and from 6.66±0.01 to 11.77±0.01, for an increase in relative humidity from 20% to 95%, in carbon dioxide from 0% to 40% and in ethanol from 0% to 0.1%, respectively, resulting in a sensitivity of 26.70±0.13fF/%RH, 31.38±0.06fF/%CO2 and 25.50±0.05pF/%ethanol for the 3 vapors and gases. The dielectric properties of wheat gluten and its sensitivity to vapors and gases offer new insights on theconception of low cost, eco-friendly sensors sought to be interfaced to passive RFID tags for intelligent packaging for food and supply chain monitoring.
|
2 |
Transferts dans les systèmes emballage/aliments : structuration à façon de matériaux multicouches pour l’emballage sous atmosphère modifiée des produits frais / Mass transfers in food/packaging systems : Structuring tailor-made multilayer materials for modified atmosphere packaging of respiring produceCagnon, Thibaut 13 November 2012 (has links)
Malgré l'ampleur que prend la technologie sous atmosphère modifiée pour le conditionnement des fruits et légumes frais, l'adéquation des matériaux d'emballage avec les besoins des produits est insuffisante. D'une part parce que la conception de ces emballages repose encore sur des approches empiriques de type essai-erreur, et d'autre part parce que la plupart des matériaux disponibles sur le marché présentent des propriétés de transfert aux gaz trop restreintes compte tenu de la gamme de propriétés nécessaire pour couvrir les besoins de ces produits. En vue d'apporter des solutions à ces deux verrous, les travaux de thèse ont porté sur :-la mise en place et la validation d'une approche basée sur l'ingénierie reverse visant à identifier les propriétés de transfert requises ou cibles pour un végétal donné ;-l'étude des procédés de structuration à différentes échelles pour moduler les propriétés de transferts de papiers enduits de protéines de blé, issus de ressources renouvelables.Une démarche d'ingénierie reverse organisée en 5 étapes dont l'identification des besoins des produits et la prédiction des propriétés de transferts requises a été proposée et validée à travers la conception d'un papier enduit actif pour l'emballage sous atmosphère modifiée adapté à la conservation de fraises. Les différents procédés de structuration étudiés ont permis de produire des matériaux couvrant des gammes de permsélectivité allant de 5 à 18 et de perméance à l'oxygène allant de 0,02x10-10 à 2x10-10 mol.Pa-1.m-2.s-2, ce qui répond parfaitement aux besoins d'une sélection représentative de produits frais respirant. Que ce soit des papiers enduits par des procédés conventionnels (couche épaisse) ou des procédés innovants (nano-structuration couche par couche en présence de feuillets d'argile, montmorillonites), il est possible de moduler les propriétés de transferts aux gaz des papiers enduits soit en jouant sur le raffinage des papiers supports, le nombre de paires de couche (gluten/montmorillonite), ou encore en soumettant les matériaux ainsi obtenus à un balayage gazeux de CO2. Cette nouvelle approche et l'efficacité des matériaux protéiques à couvrir les besoins des fruits et légumes ouvrent la voie à la conception de nouveaux emballages mieux adaptés aux produits respirant. / Despite the growing importance of the modified atmosphere packaging (MAP) technology for fresh fruits and vegetable preservation, the adequacy of the packaging materials with the produce needs remains a problem. On one hand because the packaging development approaches are still based on empirical trial and error methods, and on the other hand, because of the non-adequate gas transfer properties (too restricted to cover the large game of gas transfer properties required) of the vast majority of conventional synthetic plastics currently used for fresh food packaging. In order to overcome these hindrances, the thesis work was split on two parts:-the establishment and the validation of a new approach based on reverse engineering aiming to identify the optimal (targeted) properties for optimal preservation of a selected produce;-the study of the various structuration processes at different scales to modulated the gas transfer properties of bio-sourced wheat gluten coated papers.The new reverse engineering approach for MAP conception consisted in 5 steps including the definition of the produce needs and the prediction of the optimal gas transfer properties of the packaging, and was validated through the conception of an active optimal packaging for strawberry preservation. The different structuration processes studied allowed production of a gluten based materials able to cover ranges of permselectivity and oxygen permeations going from 5 to 18 and 0.02x10-10 à 2x10-10 mol.Pa-1.m-2.s-2, which perfectly matched the needs of a representative selection of fresh produce. Be it for conventional coating techniques (thick layer) or innovative processes (layer-by-layer nano-structuring of gluten/montmorillionites layers), it was possible to modulate the transfer properties of coated papers by changing the refining degree of the support paper, the number of layer pairs (gluten/montmorillionites) deposited, or even by submitting such materials to a CO2 treatment.This new approach and the efficiency of the protein-based materials for covering the fresh fruits and vegetable needs open the way for conception of new optimal packaging for respiring produces.
|
3 |
Modifications chimiques, mécanismes de structuration et propriétés des matériaux à base de gluten / Chemical modifications, structuration mechanisms and properties of gluten-based materialsBorne, Mathilde 14 December 2012 (has links)
Les matériaux agroressourcés à base de gluten de blé présentent des propriétés mécaniques qui ne leurs permettent pas de concurrencer celles des plastiques usuels issus de la pétrochimie. Les objectifs de ce travail de thèse visent (i) à améliorer les propriétés d'élongation et de résistance des matériaux gluten pour atteindre celles des polymères courants et (ii) à maîtriser la réactivité du gluten au cours de l'élaboration des matériaux afin de pouvoir utiliser les procédés connus de la plasturgie. L'enjeu scientifique est de comprendre la réactivité du gluten sous l'effet des traitements thermomécaniques et les mécanismes régissant les propriétés mécaniques des matériaux. Les fonctions réactives visées sont les thiols/disulfures qui assurent la réticulation des protéines du gluten. Nous avons testé l'effet de bloqueurs de thiols de type maléimide mono- et bifonctionnels, de nature, de taille et d'hydrophobicité variées. Ces derniers ont éventuellement été bloqués par réaction de Diels-Alder. L'ajout d'additifs de type bismaléimide bloqué par réaction de Diels-Alder permet de différer la réticulation à l'étape de thermoformage et de substituer aux liens covalents habituels des liens thioéthers. L'ajout de cet additif permet de doubler l'élongation à la rupture du matériau gluten mais entraîne la chute de la rigidité. L'effet de l'ajout de molécules bis- et tétrathiols a également été testé. Ces additifs ont permis d'augmenter par plus de 1,5 fois l'élasticité des matériaux gluten. Une analyse multi-échelle (moléculaire par FTIR, macromoléculaire par SEC et macroscopique par test de traction ; le tout complété par une analyse DMTA) de la structure et des propriétés a montré que l'absence de gain en élasticité était due au maintien d'une organisation structurale majoritaire en hélices-α, qui est le propre du gluten natif. La création d'interactions interprotéiques par feuillets-β a été identifiée comme seule responsable du gain d'élasticité des matériaux, la formation d'agrégats protéiques par le biais de liaisons disulfures ou thioéthers ne jouant qu'un rôle secondaire. Un mécanisme réactionnel mettant en avant les conditions qui assurent la participation de toutes les classes de protéines du gluten à la constitution du réseau protéique est discuté. Deux nouvelles voies prometteuses de mélange avec du caoutchouc et copolymérisation par « grafting from » ont été explorées et restent à approfondir. / Wheat gluten can be used to make biomaterials. Nevertheless their mechanical properties are not competitive with commonly used petroleum-based plastics. The purposes of this work aim at (i) improving strain and strength properties of gluten-based materials in order to reach those of common polymers and (ii) controlling gluten reactivity during material process in order to use already well-known processes for manufacturing plastics. The scientific stakes are to understand gluten reactivity during thermo-mechanical treatments and the mechanisms which govern mechanical properties of materials. The reactive functions of gluten are thiols/disulfides which are responsible of gluten proteins crosslinking. The effect of thiol blocker molecules such as mono and bismaleimide of various nature, sizes and hydrophobicity was tested. These molecules were eventually blocked by Diels-Alder reactions. The addition of bismaleimide blocked by Diels-Alder reaction enables to postpone the crosslinking to the thermo-molding step and also to substitute disulfides bonds for thioether bonds. The addition of this additive succeeds in doubling the strain at break of gluten-based material but leads to a decrease of the stiffness. The effect of addition of bis- and tetrathiol molecules was also considered as tests. These additives lead to increase by 1.5 times the elasticity of gluten-based materials. A multi-scale study (molecular scale by FTIR, macromolecular scale by SEC and macroscopic scale by tensile test, all supported by DTMA analysis) of the structure and properties showed that a predominant conformation with α-helices which is the case of native gluten, leads to a decrease of elasticity. The formation of β-sheets interproteic interactions was identified as the only responsible of elasticity increases of the material. The formation of proteic aggregates with disulfide and thioeter bonds only plays a secondary role. A reaction mechanism highlighting the conditions that ensure the participation of all types of gluten proteins in the gluten network upbuilding is discussed. Two new promising ways of rubber melt and copolymerization by “grafting from” technique were explored and need to be further developed.
|
4 |
Materiaux nanocomposites biodegradables pour la liberation controlee de pesticides / Biodegradable nanocomposites materials for pesticide control releaseChevillard, Anne 17 November 2011 (has links)
L'objectif de cette thèse était de développer des matériaux biodégradables (nano-)composites à libération contrôlée de pesticides, afin d'améliorer leur efficacité et limiter leurs impacts sur l'environnement (pertes par lessivage, dégradation etc.). La stratégie a consisté à réaliser par extrusion des matériaux à base de gluten de blé et de nanoparticules d'argile pour moduler la libération d'un herbicide modèle (l'éthofumesate) introduit dans la matrice. Combinée au gluten, l'utilisation d'argiles vise à moduler les propriétés de transfert de matière en jouant 1/sur des phénomènes de sorption (affinité entre pesticide et argiles), et 2/sur des phénomènes de diffusion (structure des composites gluten/argiles). Cette étude a soulevé différentes questions scientifiques : • Identifier les mécanismes impliqués dans les phénomènes de sorption et de désorption de l'éthofumesate sur différentes argiles • Comprendre comment la présence des nanoparticules d'argiles dans une matrice de gluten de blé pouvait induire des changements de propriétés du matériau telles que la sensibilité à l'eau et la vitesse de biodégradation, en lien avec les modifications structurales. • Identifier le déterminisme des modifications des propriétés de transfert de l'éthofumesate dans les « matériaux complets » (gluten-nanoparticules d'argiles-éthofumesate) dans des systèmes modèles et en conditions réelles (sol agricole).C'est grâce à une démarche intégrée, associant des outils d'étude appartenant à des domaines de compétences complémentaires comme la science des matériaux, les matériaux nanocomposites, l'agronomie, la formulation de pesticides et la modélisation des propriétés de transfert, qu'il a été possible de répondre aux différents objectifs scientifiques. Cette étude contribue ainsi à une meilleure compréhension des mécanismes de transfert de composés d'intérêt au sein de matériaux à base d'agropolymères en présence de nanoparticules d'argile. Elle a notamment permis de pondérer l'importance de la structure nanocomposite, par rapport aux phénomènes de sorption, lorsqu'on s'intéresse à la modulation des propriétés de transfert au sein d'un matériau. / The objectives of this study were to develop (nano)composite biodegradable materials for the controlled delivery of pesticides with the aim being to improve their efficiency and limit their negative impacts on the environment (due to leaching, degradation etc.). Our strategy has consisted in using an extrusion process to design materials based on wheat gluten and clay nanoparticules in order to fine tune the release of a model herbicide (ethofumesate) introduced into the matrix. Combined with gluten, the use of nanoclays aims to modulate transfer properties by acting on 1/ sorption phenomenon (driven by pesticide/clay affinity), and 2/diffusion phenomenon (depending on wheat gluten/clay structure). This study has led to different scientific questions : • Identify mechanisms involved in sorption/desorption behaviour of ethofumesate on different clays • Understand how the presence of nanoclays in a wheat gluten matrix was able to induce changes in material properties such as water sensitivity and biodegradation rate, in relation to structural changes • Identify the determinism of these changes in transfer properties in the case of the finished materials containing wheat gluten/nanoclay/ethofumesate, both in model medium and in real conditions (soil)Responding to these different scientific objectives has been possible using an integrated approach, combining tools of complementary skill fields such as material science, nanocomposite materials, agronomy, pesticide formulation and transfer modeling properties This study contributes to a better understanding of transfer properties of interesting compounds in the case of agropolymer based materials containing or filled with nanoclays. This work has notably enabled to balance the importance given at the nancomposite structure contribution in relation to sorption phenomenon in a context where the objective is to modulate material transfer properties.
|
5 |
A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications / Etude de la stabilité de films industriels de PLA et de leur modification de surface pour des applications en tant qu'emballage alimentaire biodégradableRocca Smith, Jeancarlo Renzo 13 March 2017 (has links)
Les plastiques sont aujourd'hui des matériaux ubiquitaires utilisés dans tous les aspects de notre vie quotidienne, en particulier pour l'emballage alimentaire. Cependant, après usage, les plastiques sont une source de pollution de notre environnement naturel. Certains plastiques biodégradables et biosourcés sont déjà disponibles sur le marché, comme l’acide polylactique (PLA), mais ils présentent des performances inférieures. Ce travail de thèse vise à: 1) étudier la stabilité des films de PLA dans diverses conditions de température, d'humidité relative, de pH, d'exposition à des liquides ou à des vapeurs... 2) mieux comprendre l'impact de certains procédés industriels tels que les traitements corona ou pressage à chaud sur le PLA 3) combiner le PLA à des couches de gluten de blé afin de produire des complexes ayant des propriétés barrière plus élevées.Les films de PLA ont été produits par la société Taghleef Industries sur demande et avec des traitements de surface spécifiques, comme le traitement Corona. Des films et des enductions à basede gluten de blé ont été développés à l’échelle laboratoire ainsi que des complexes tricouches PLA- gluten-PLA. Les propriétés physiques et chimiques des films ont été étudiées par différentes techniques issues des sciences des matériaux et des aliments ont été utilisées, telles que l’analyse enthalpique différentielle (DSC), l'analyse thermogravimétrique (TGA), la chromatographie d'exclusion de taille (SEC), la microscopie de force atomique (AFM), la microscopie électronique (SEM), la spectroscopie infrarouge à transformée de Fourier (ATR-FTIR) et la spectroscopie de rayons X (XPS). Les propriétés fonctionnelles telles que la perméabilité à la vapeur d'eau, à l'oxygène (O2), au dioxyde de carbone (CO2) ou à l'hélium (He), la sorption de gaz et de vapeurs, les propriétés mécaniques et de surface ont également été étudiées.Exposés au CO2, les films de PLA présentent une isotherme de sorption linéaire avec l’augmentation de pression. Cependant les modifications physiques et chimiques induites à des pressions élevées n'affectent pas son utilisation dans le domaine d’application alimentaire. Au contraire, lorsque les films de PLA sont exposés à l'humidité à l'état liquide ou vapeur, leur dégradation survient après deux mois à 50 ° C (essai accéléré) suite à son hydrolyse. Cette détérioration chimique, mise en évidence par une diminution significative de la masse molaire, entraine une perte de transparence, mais également par une augmentation de la cristallinité. Par ailleurs, le pH n'affecte pas le taux d'hydrolyse, ce qui est d'un intérêt essentiel pour conditionner des aliments humides.Les films à base gluten de blé ont été choisis pour leurs propriétés de barrière élevées lorsque l’humidité relative reste faible. L'incorporation de lipides n'a pas apporté d'amélioration de leurs performances barrières. Cependant, l'utilisation d’un procédé d’homogénéisation à haute pression a permis une meilleure dispersion du gluten, ce qui a conduit à des films plus homogènes ayant ainsi de meilleures propriétés fonctionnelles. Ces conditions ont donc été retenues pour réaliser des complexes à 3 couches par assemblage d'une couche de gluten de blé entre deux couches de PLA en utilisant un pressage à chaud (10 MPa, 130 ° C, 10 min).La technologie de pressage à chaud montre une forte influence sur les films de PLA, de gluten et sur les tricouches. Elle induit une cristallisation accrue du PLA, ce qui augmente ses propriétés de barrière d'environ 40% et 60%, respectivement pour l'eau et l'oxygène. Cela masque par contre l’effet du traitement corona. D’autre part, le pressage à chaud induit une restructuration du réseau de gluten qui améliore les propriétés de barrière aux gaz des complexes, mais provoque aussi une évaporation de l'eau à l'interface gluten / PLA défavorable à l’adhésion des couches (...) / Poly(lactic acid) (PLA) is a biodegradable and renewable polyester, which is considered as the most promising eco-friendly substitute of conventional plastics. It is mainly used for food packaging applications, but some drawbacks still reduce its applications. On the one hand, its low barrier performance to gases (e.g. O2 and CO2) limits its use for applications requiring low gas transfer, such as modified atmosphere packaging (MAP) or for carbonate beverage packaging. On the other hand, its natural water sensitivity, which contributes to its biodegradation, limits its use for high moisture foods with long shelf life.Other biopolymers such as wheat gluten (WG) can be considered as interesting materials able to increase the PLA performances. WG is much more water sensitive, but it displays better gas barrier properties in dry surroundings. This complementarity in barrier performances drove us to study the development of multilayer complexes PLA-WG-PLA and to open unexplored application scenarios for these biopolymers.This project was thus intended to better understand how food components and use conditions could affect the performances of PLA films, and how these performances could be optimized by additional processing such as surface modifications (e.g. corona treatment and coatings).To that aim, three objectives were targeted:- To study the stability of industrially scale produced PLA films in contact with different molecules (CO2 and water) and in contact with vapour or liquid phases, with different pH, in order to mimic a wide range of food packaging applications.- To better understand the impact of some industrial processes such as corona or hot press treatments on PLA.- To combine PLA with WG layer to produce high barrier and biodegradable complexes.Different approaches coming from food engineering and material engineering were adopted. PLA films were produced at industrial scale by Taghleef Industries with specific surface treatments like corona. Wheat gluten films, coatings and layers were developed and optimized at lab scale as well as the 3-layers PLA-WG-PLA complexes. Different technologies able to mimic industrial processes were considered such as hot press, high pressure homogenization, ultrasounds, wet casting and spin coating. The physical and chemical properties of PLA films were then studied at the bulk and surface levels, from macroscopic to nanometer scale. The functional properties like permeability to gases (e.g. O2 and CO2) and water, gas and vapour sorption, mechanical and surface properties were also investigated.Exposed to CO2, PLA films exhibited a linear sorption behaviour with pressure, but the physical modifications induced by high pressure did not affect its use for food packaging. However, when exposed to moisture in both liquid and vapour state (i.e. environments from 50 to 100 % relative humidity (RH)), PLA was significantly degraded after two months at 50 °C (accelerated test) due to hydrolysis. This chemical deterioration was evidenced by a significant decrease of the molecular weight, which consequently induced a loss of transparency and an increase of the crystallinity. The hydrolysis was accelerated when the chemical potential of water was increased, and it was surprisingly higher for vapour compared to liquid state. In addition, pH did not affect the rate of hydrolysis.Knowing much better the limitation of PLA films, the challenge was to improve its functional properties by combining them with WG, as a high gas barrier bio-sourced and biodegradable polymer. The use of high pressure homogenization produced homogeneous WG coatings, with improved performances. This process was thus selected for making 3 layer complexes by assembly of a wheat gluten layer between two layers of PLA, together with corona treatment and hot press technologies.Corona treatment applied to PLA physically and chemically modified its surface at the nanometer scale (...) / I materiali plastici convenzionali trovano impiego in tutti campi della nostra vita, specialmente nel settore del packaging alimentare, ed in seguito all’utilizzo contaminano e danneggiano il nostro ecosistema. Materiali plastici derivanti da risorse naturali e biodegradabili, come acido polilattico (PLA), sono attualmente disponibili sul mercato anche se caratterizzati da performances inferiori.Questo progetto di dottorato è mirato 1) allo studio della stabilità di film di PLA a varie condizioni di stoccaggio come temperatura, umidità relativa, pH, o esposizione a vapori o gas; 2) a comprendere meglio le influenze di alcuni processi industriali come trattamento corona e hot press nelle proprietà dei film di PLA; 3) a sviluppare complessi multistrato tra film di PLA e di glutine che abbiano proprietà barriera più elevate rispetto ai singoli film.Gli imballaggi a base di PLA sono stati prodotti da Taghleef Industries, produttore leader nel settore e dotato di infrastrutture atte ai trattamenti di modificazione di superfice come il trattamento corona. I film a base di glutine e i coatings sono stati sviluppati e ottimizzati su scala di laboratorio, così come i complessi trilaminari PLA-glutine-PLA.Le proprietà fisiche e chimiche dei film di PLA sono state investigate a livello di superficie, così come a livello di bulk. Diverse tecniche analitiche, provenienti dal campo delle scienze dei materiali e delle scienze degli alimenti, sono state adottate in questo progetto di dottorato come calorimetria differenziale a scansione (DSC), termogravimetria (TGA), cromatografia di esclusione molecolare (SEC), microscopia a forza atomica (AFM), microscopia elettronica a scansione (SEM), spettrofotometria infrarossa a trasformata di Fourier in riflettanza totale attenuata (ATR-FTIR) e spettroscopia fotoelettronica a raggi X (XPS).Le proprietà funzionali come le permeabilità al vapore acqueo (H2O), all’ossigeno (O2), al diossido di carbonio (CO2) o all’elio (He) sono state investigate, cosi come l’assorbimento di gas e/o vapori, le proprietà meccaniche e le proprietà di superfice.Nonostante i film di PLA assorbano linearmente CO2 a pressioni crescenti, l’assorbimento di tale gas è ridotto a basse pressioni in modo da non modificare le sue proprietà fisiche – come contrariamente osservato quando il PLA è esposto a CO2 ad alte pressioni – e da non influenzare negativamente il suo utilizzo come imballaggio alimentare. Ad ogni modo, quando i film di PLA sono esposti ad ambienti umidi, o quando sono immersi in acqua liquida, sono significativamente degradati per idrolisi dopo due mesi di stoccaggio a 50 °C (test accelerato). Questo deterioramento chimico è stato evidenziato da una significativa riduzione del peso molecolare del PLA che, conseguentemente, induce una sua perdita di trasparenza e ne incrementa la sua cristallinità. Inoltre, è stato evidenziato che il pH non influenza la velocità di idrolisi. Quest’informazione ha importanza pratica per possibili utilizzi di PLA come imballaggio di alimenti ad alta umidità.Il glutine è stato scelto per le sue alte proprietà barriera, quando è protetto da ambienti ad alta umidità. Si è visto che l’incorporazione di lipidi non porta con sé grandi miglioramenti nelle performances dei film a base di glutine. Invece, l’utilizzo della tecnologia di omogeneizzazione ad alte pressioni permette una migliore dispersione del glutine, ottenendo film più omogenei e con migliori proprietà funzionali. Questa tecnologia è stata quindi scelta per produrre i complessi multistrato, intercalando i film di glutine tra due film di PLA, usando il trattamento hot press (10 MPa, 130 °C, 10 min). Si è osservato che il trattamento hot press modifica le proprietà dei film di PLA, di glutine e dei film multistrato Hot press induce cristallizzazione in PLA, e conseguentemente aumenta le sue proprietà barriera complessive, approssimativamente al 40 % all’acqua e al 60 % all’ossigeno (...) / Los materiales plásticos tradicionales son utilizados en todos los campos de nuestra vida y en particular modo como embajales de productos alimenticios; los cuales después de ser utilizados contaminan y dañan nuesto medio ambiente. Materiales plásticos derivados de recursos naturales y biodegradables, como el ácido poliláctico (PLA) se encuentran actualmente disponibles en el mercado a pesar de sus menores performances. Este proyecto de doctorado está orientado 1) al estudio de la estabilidad de películas de PLA bajo diferentes condiciones como temperatura, humedad relativa, pH o exposición a vapores o gases, 2) comprender los efectos en las propiedades de las películas de PLA de algunos procesos industriales como el tratamiento corona y hot press, 3) desarrollar complejos multicapas de PLA y gluten que tengan propiedades barrera mejores que las de las películas individuales.Los embalajes a base de PLA han sido producidos por Taghleef Industries, productor líder en el sector y dotado de las infraestructuras industriales adaptadas a los tratamientos superficiales como el tratamiento corona. Las películas de gluten y los coatings han sido desarrollados a escala de laboratorio, así como los complejos tricapa PLA-gluten-PLA.Las propiedades físicas y químicas de las películas de PLA han sido investigadas a nivel de superficie así como a nivel de bulk. Diferentes técnicas de análisis, frecuentemente utilizadas en los campos de las ciencias de los materiales y de las ciencias de los alimentos, han sido empleadas en este proyecto como calorimetría diferencial de barrido (DSC), análisis termogravimétrico (TGA), cromotagrafía de exclusión por tamaño (SEC), microscopía de fuerza atómica (AFM), microscopía electrónica de barrido (SEM), espectroscopía de infrarrojos por transformada de Fourier con reflectancia total atenuada (ATR-FTIR) y espectroscopía fotoelectrónica de rayos X (XPS).Las propiedades funcionales de los embalajes como las permeabilidades al vapor de agua, al oxígeno (O2), al dióxido de carbono (CO2) o al helio (He) han sido investigadas, asi como la absorción de gases/vapores, las propiedades mecánicas y las propiedades superficiales. A pesar de que las películas de PLA absorven linealmente CO2 a presiones mayores, la absorción del gas es reducida a bajas presiones y no modifica las propiedades físicas del PLA, como contrariamente sucede cuando el PLA es expuesto a altas presiones de CO2. Por lo tanto, su influencia en las propiedades funcionales del PLA es mínima en las normales aplicaciones alimentarias. De todos modos cuando los embalajes de PLA son expuestos a ambientes húmedos o cuando son sumergidos en agua, procesos de hidrólisis los degradan significativamente después de dos meses de conservación a 50 °C (test acelerado). Este deterioramiento químico ha sido evidenciado por una significativa reducción del peso molecular del PLA, que en consecuencia induce una pérdida de transparencia y un aumento de su cristalinidad. Además, se ha observado que el pH no influye en la velocidad de hidrólisis. Esta información tiene una importancia práctica para posibles usos del PLA como embalajes de alimentos a alta humedad. El gluten ha sido elegido por sus altas propiedades barrera cuando es protegido de ambientes a alta humedad. La incorporación de lípidos en las películas de gluten no han mejorado sus performances. Pero la tecnología de la homogenización a altas presiones ha permitido mejorar la dispersión del gluten, obteniendo películas más homogéneas y con mejores propiedades funcionales. Esta tecnología ha sido, por lo tanto, elegida para producir los complejos multicapa, intercalando las películas de gluten entre dos de PLA, utilizando el tratamiendo hot press (10 MPa, 130 °C, 10 min) (...)
|
Page generated in 0.0741 seconds