• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human Activity Recognition : Deep learning techniques for an upper body exercise classification system

Nardi, Paolo January 2019 (has links)
Most research behind the use of Machine Learning models in the field of Human Activity Recognition focuses mainly on the classification of daily human activities and aerobic exercises. In this study, we focus on the use of 1 accelerometer and 2 gyroscope sensors to build a Deep Learning classifier to recognise 5 different strength exercises, as well as a null class. The strength exercises tested in this research are as followed: Bench press, bent row, deadlift, lateral rises and overhead press. The null class contains recordings of daily activities, such as sitting or walking around the house. The model used in this paper consists on the creation of consecutive overlapping fixed length sliding windows for each exercise, which are processed separately and act as the input for a Deep Convolutional Neural Network. In this study we compare different sliding windows lengths and overlap percentages (step sizes) to obtain the optimal window length and overlap percentage combination. Furthermore, we explore the accuracy results between 1D and 2D Convolutional Neural Networks. Cross validation is also used to check the overall accuracy of the classifiers, where the database used in this paper contains 5 exercises performed by 3 different users and a null class. Overall the models were found to perform accurately for window’s with length of 0.5 seconds or greater and provided a solid foundation to move forward in the creation of a more robust fully integrated model that can recognize a wider variety of exercises.
2

Exercise Classification with Machine Learning

Ekstrand, Joel January 2023 (has links)
Innowearable AB has developed a product called Inno-XTM that calculates musclefatigue during three exercises: squat jumps, wall sit, and leg extension. Inno-X uses an accelerometer and a surface electromyography sensor. The goal of thisproject was to create the signal processing part of a machine-learning (ML) pipeline that classifies the exercises in real-time. Data was collected from the sensors to create a training environment that could later be translated to a real-time environment using a sliding window technique. A Savitsky-Golay filter (SG), lowpass, and highpass filters were tested in order to remove noise from the signal. The best filter proved to be the SG filter. Both time and frequency domain features were used in feature extraction. The finished product used 24 features from both domains combined. These methods together with the ML algorithms created in a collabora-tive project led to a classification accuracy for the training environment of 98.62%, while the real-time environment reached 90%. By collecting a larger and more diverse dataset, and addressing the issue of leg extension and wall sit exercises being too similar, real-time classification can be further improved which will make the ML pipeline usable for Innowearables’ customers. / Innowearable AB har utvecklat en produkt som heter Inno-XTM som räknar ut muskeltröttheten vid 3  övningar: upphopp, jägarvila och benextensioner. Inno-X använder en accelerometer och en yt-elektromyografi-sensor. Målet med projektet var att skapa signalprocesseringsdelen av en machine learning (ML) pipelinesom klassificerar dessa övningar i realtid. Data samlades in från sensorerna för att skapa en träningsmiljö som sedan kunde gå  över i realtidsmiljö genom attanvända en sliding-window teknik. Savitsky-Golay (SG) filter, högpassfilter, och lågpassfilter användes för att reducera brus i sensorsignalerna. SG filtret presterade bäst. Features från både tids- och frekvensdomän användes i feature extraction. Slutprodukten använde 24 features kombinerat från båda domänen. Dessa metoder tillsammans med ML algoritmer som togs fram i ett partnerprojekt gav ett resultat i träningsmiljön på 98.62% i klassificeringsnoggrannhet och 90% för realtidsmiljön. Genom att samla större mängd data med mer diversitet och lösa problemetatiken i att jägarvila och benextensioner  är för lika, kommer realtidsklas-sifikationen förbättras vilket hade gjort att ML pipelinen blir användbar för Innowearables kunder.
3

Computer Vision in Fitness: Exercise Recognition and Repetition Counting / Datorseende i fitness: Träningsigenkänning och upprepningsräkning

Barysheva, Anna January 2022 (has links)
Motion classification and action localization have rapidly become essential tasks in computer vision and video analytics. In particular, Human Action Recognition (HAR), which has important applications in clinical assessments, activity monitoring, and sports performance evaluation, has drawn a lot of attention in research communities. Nevertheless, the high-dimensional and time-continuous nature of motion data creates non-trivial challenges in action detection and action recognition. In this degree project, on a set of recorded unannotated mixed workouts, we test and evaluate unsupervised and semi-supervised machine learning models to identify the correct location, i.e., a timestamp, of various exercises in videos and to study different approaches in clustering detected actions. This is done by modelling the data via the two-step clustering pipeline using the Bag-of-Visual-Words (BoVW) approach. Moreover, the concept of repetition counting is under consideration as a parallel task. We find that clustering alone tends to produce cluster solutions with a mixture of exercises and is not sufficient to solve the exercise recognition problem. Instead, we use clustering as an initial step to aggregate similar exercises. This allows us to effectively find many repetitions of similar exercises for their further annotation. When combined with a subsequent Support Vector Machine (SVM) classifier, the BoVW concept proved itself, achieving an accuracy score of 95.5% on the labelled subset. Much attention has also been paid to various methods of dimensionality reduction and benchmarking their ability to encode the original data into a lower-dimensional latent space. / Rörelseklassificering och handlingslokalisering har snabbt blivit viktiga uppgifter inom datorseende och videoanalys. I synnerhet har HAR fångat en stor uppmärksamhet i forskarsamhällen, då den har viktiga tillämpningar i kliniska bedömningar, aktivitetsövervakning och utvärdering av sportprestanda.Likväl så skapar den högdimensionella och tidskontinuerliga naturen hos rörelsedata icke-triviala utmaningar i handlingsdetektering och handlingsigenkänning. I detta examensarbete testar vi samt utvärderar oövervakade och semi-övervarakde maskininlärningsmodeller på en samling av inspelade blandade träningspass, som inte är noterade. Detta är för att identifiera den korrekta positionen, d.v.s en tidsstämpel, för olika övningar i videofilmer och för att studera olika tillvägagångssätt för att gruppera upptäckta handlingar. Detta görs genom att modellera data via tvåstegs klustringspipeline, med tillämpning av BoVW-metoden. Som en parallell uppgift övervägs även repetitionsräkning som koncept. Vi finner att kluster enbart tenderar att producera klusterlösningar med en blandning av övningar och är därför inte tillräckligt för att lösa problemet med övningsigenkänning. Istället, använder vi klustring som ett första steg för att sammanställa liknande övningar. Detta gör att vi effektivt kan hitta många upprepningar av liknande övningar för att vidare hantera dess anteckningar. Detta, kombinerad med en efterföljande SVM-klassificerare, visade sig att BoVWkonceptet är mycket effektivt, vilket uppnådde en noggrannhet på 95, 5% på den märkta delmängden. Mycket uppmärksamhet har också ägnats åt olika metoder för dimensionalitetsreduktion och jämförelse av dessa metoders förmåga att koda originaldata till ett dimensionellt lägre latentutrymme.
4

Exploring the Feasibility of Exercise Detection on the Exxentric kBox Platform / Undersökning av möjligheten att detektera övningar på Exxentric kBox-platformen

Mehr, Mahyar January 2023 (has links)
Flywheel training is an increasingly popular training method that aids in the recovery process and promotes strength development while reducing the risk of re-injury. Additionally, automatic exercise classification offers athletes the convenience of effortlessly monitoring and tracking their training progress, enabling them to maintain consistency and achieve their fitness goals effectively. This thesis aims to investigate the feasibility and accuracy of developing a machine-learning model for classifying exercises performed on Exxentric kBox machines. The objective is to assess the model’s accuracy and determine whether the features provided by the Exxentric app are sufficient for constructing a robust classifier. To lay a strong foundation for the investigation, the research begins with a comprehensive literature review of exercise recognition studies. An exploratory data analysis is then conducted to gain valuable insights into the characteristics of the exercise data. The data preparation phase involves various techniques such as cleaning, feature engineering, scaling, sampling, and encoding to optimize the data for modeling. Moreover, signal processing techniques are employed to extract relevant features from the exercise data. A testing protocol is established, consisting of two sets of ten exercises. Each exercise is performed with a randomized number of repetitions, ranging from 5 to 12 repetitions. Data collection is carried out with the participation of ten individuals using the Exxentric App on their smartphones. Different types of classifiers are trained using data from the Exxentric database and tested on the collected data on-site, employing the generated features. Additionally, a CNN classifier is explored, utilizing only angular velocity as input. Comparative analysis is performed on the evaluation metrics of the models. In conclusion, while achieving accurate classification for all ten exercises was not fully realized, the CNN model relying on angular velocity as input exhibited promising results. Notably, squats were predicted correctly 95% of the time, which is the most prominent observation. The model also demonstrated significant accuracy in correctly identifying bent-over rows (72%), deadlifts (72.2%), standing calf raises (70.6%), and biceps curls (67%). Further research is warranted to improve the effectiveness and accuracy of exercise classification models. This includes exploring alternative input methods and refining feature engineering techniques to advance the field. / Svänghjulsträning är en alltmer populär träningsmetod som underlättar återhämtningsprocessen och främjar styrkeutveckling samtidigt som den minskar risken för nya skador. Dessutom erbjuder automatisk träningsklassificering idrottare bekvämligheten att enkelt övervaka och spåra sina träningsframsteg, vilket gör det möjligt för dem att upprätthålla konsekvens och effektivt uppnå sina träningsmål. Denna avhandling syftar till att undersöka genomförbarheten och noggrannheten hos att utveckla en maskininlärningsmodell för att klassificera övningar som utförs på Exxentric kBox-maskiner. Målet är att bedöma modellens noggrannhet och avgöra om funktionerna som tillhandahålls av Exxentric-appen är tillräckliga för att konstruera en robust klassificerare. För att lägga en stark grund för undersökningen inleds forskningen med en omfattande litteraturgenomgång av studier om igenkänning av övningar. Därefter genomförs en explorativ dataanalys för att få värdefulla insikter om egenskaperna hos övningsdatan. Dataförberedelsen innefattar olika tekniker såsom rengöring, funktionsteknik, skalning, provtagning och kodning för att optimera datan för modellering. Dessutom används signalbehandlingstekniker för att extrahera relevanta egenskaper från övningsdatan. En testprotokoll etableras, bestående av två uppsättningar med tio övningar. Varje övning utförs med ett slumpmässigt antal repetitioner, från 5 till 12 repetitioner. Insamlingen av data utförs med deltagande av tio individer som använder Exxentric-appen på sina smartphones. Olika typer av klassificerare tränas med hjälp av data från Exxentricdatabasen och testas på den insamlade datan på plats genom att använda de genererade egenskaperna. Dessutom undersöks en CNN-klassificerare som enbart använder vinkelhastighet som indata. En jämförande analys utförs på utvärderingsmåtten för modellerna. Slutsatsen är att även om det inte var möjligt att uppnå en korrekt klassificering för alla tio övningar, uppvisade CNN-modellen, med enbart vinkelhastighet som indata, lovande resultat. Noterbart är att knäböjningar korrekt förutsades 95% av tiden, vilket är den mest framträdande observationen. Modellen visade även betydande noggrannhet vid korrekt identifiering av stående rodd (72%), marklyft (72,2%), stående vadpress (70,6%) och bicepscurls (67%). Ytterligare forskning motiveras för att förbättra effektiviteten och noggrannheten hos modeller för klassificering av övningar. Detta inkluderar att utforska alternativa metoder för indata och att förbättra teknikerna för funktionsteknik för att vidareutveckla området.

Page generated in 0.4248 seconds