• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 20
  • 11
  • Tagged with
  • 70
  • 32
  • 30
  • 23
  • 22
  • 21
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 14
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nouvelle méthode de traitement d'images multispectrales fondée sur un modèle d'instrument pour la haut contraste : application à la détection d'exoplanètes

Ygouf, Marie 06 December 2012 (has links) (PDF)
Ce travail de thèse porte sur l'imagerie multispectrale à haut contraste pour la détection et la caractérisation directe d'exoplanètes. Dans ce contexte, le développement de méthodes innovantes de traitement d'images est indispensable afin d'éliminer les tavelures quasi-statiques dans l'image finale qui restent à ce jour, la principale limitation pour le haut contraste. Bien que les aberrations résiduelles instrumentales soient à l'origine de ces tavelures, aucune méthode de réduction de données n'utilise de modèle de formation d'image coronographique qui prend ces aberrations comme paramètres. L'approche adoptée dans cette thèse comprend le développement, dans un cadre bayésien, d'une méthode d'inversion fondée sur un modèle analytique d'imagerie coronographique. Cette méthode estime conjointement les aberrations instrumentales et l'objet d'intérêt, à savoir les exoplanètes, afin de séparer correctement ces deux contributions. L'étape d'estimation des aberrations à partir des images plan focal (ou phase retrieval en anglais), est la plus difficile car le modèle de réponse instrumentale sur l'axe dont elle dépend est fortement non-linéaire. Le développement et l'étude d'un modèle approché d'imagerie coronographique plus simple se sont donc révélés très utiles pour la compréhension du problème et m'ont inspiré des stratégies de minimisation. J'ai finalement pu tester ma méthode et d'estimer ses performances en terme de robustesse et de détection d'exoplanètes. Pour cela, je l'ai appliquée sur des images simulées et j'ai notamment étudié l'effet des différents paramètres du modèle d'imagerie utilisé. J'ai ainsi démontré que cette nouvelle méthode, associée à un schéma d'optimisation fondé sur une bonne connaissance du problème, peut fonctionner de manière relativement robuste, en dépit des difficultés de l'étape de phase retrieval. En particulier, elle permet de détecter des exoplanètes dans le cas d'images simulées avec un niveau de détection conforme à l'objectif de l'instrument SPHERE. Ce travail débouche sur de nombreuses perspectives dont celle de démontrer l'utilité de cette méthode sur des images simulées avec des coronographes plus réalistes et sur des images réelles de l'instrument SPHERE. De plus, l'extension de la méthode pour la caractérisation des exoplanètes est relativement aisée, tout comme son extension à l'étude d'objets plus étendus tels que les disques circumstellaire. Enfin, les résultats de ces études apporteront des enseignements importants pour le développement des futurs instruments. En particulier, les Extremely Large Telescopes soulèvent d'ores et déjà des défis techniques pour la nouvelle génération d'imageurs de planètes. Ces challenges pourront très probablement être relevés en partie grâce à des méthodes de traitement d'image fondées sur un modèle direct d'imagerie.
42

Recherche et caractérisation d'exoplanètes à grande séparation autour d'étoiles jeunes de faible masse

Naud, Marie-Eve 08 1900 (has links)
No description available.
43

Détection et caractérisation d'exoplanètes dans des images à grand contraste par la résolution de problème inverse / Detection and characterization of exoplanets in high contrast images by the inverse problem approach

Cantalloube, Faustine 30 September 2016 (has links)
L’imagerie d’exoplanètes permet d’obtenir de nombreuses informations sur la lumière qu’elles émettent, l’interaction avec leur environnement et sur leur nature. Afin d’extraire l’information des images, il est indispensable d’appliquer des méthodes de traitement d’images adaptées aux instruments. En particulier, il faut séparer les signaux planétaires des tavelures présentes dans les images qui sont dues aux aberrations instrumentales quasi-statiques. Dans mon travail de thèse je me suis intéressée à deux méthodes innovantes de traitement d’images qui sont fondés sur la résolution de problèmes inverses.La première méthode, ANDROMEDA, est un algorithme dédié à la détection et à la caractérisation de point sources dans des images haut contraste via une approche maximum de vraisemblance. ANDROMEDA exploite la diversité temporelle apportée par la rotation de champ de l’image (où se trouvent les objets astrophysiques) alors que la pupille (où les aberrations prennent naissance) est gardée fixe. A partir de l’application sur données réelles de l’algorithme dans sa version originale, j’ai proposé et qualifié des améliorations afin de prendre en compte les résidus non modélisés par la méthode tels que les structures bas ordres variant lentement et le niveau résiduel de bruit correlé dans les données. Une fois l’algorithme ANDROMEDA opérationnel, j’ai analysé ses performances et sa sensibilité aux paramètres utilisateurs, montrant la robustesse de la méthode. Une comparaison détaillée avec les algorithmes les plus utilisés dans la communauté a prouvé que cet algorithme est compétitif avec des performances très intéressantes dans le contexte actuel. En particulier, il s’agit de la seule méthode qui permet une détection entièrement non-supervisée. De plus, l’application à de nombreuses données ciel venant d’instruments différents a prouvé la fiabilité de la méthode et l’efficacité à extraire rapidement et systématiquement (avec un seul paramètre utilisateur à ajuster) les informations contenues dans les images. Ces applications ont aussi permis d’ouvrir des perspectives pour adapter cet outil aux grands enjeux actuels de l’imagerie d’exoplanètes.La seconde méthode, MEDUSAE, consiste à estimer conjointement les aberrations et les objets d’intérêt scientifique, en s’appuyant sur un modèle de formation d’images coronographiques. MEDUSAE exploite la redondance d’informations apportée par des images multi-spectrales. Afin de raffiner la stratégie d’inversion de la méthode et d’identifier les paramètres les plus critiques, j’ai appliqué l’algorithme sur des données générées avec le modèle utilisé dans l’inversion. J’ai ensuite appliqué cette méthode à des données simulées plus réalistes afin d’étudier l’impact de la différence entre le modèle utilisé dans l’inversion et les données réelles. Enfin, j’ai appliqué la méthode à des données réelles et les résultats préliminaires que j’ai obtenus ont permis d’identifier les informations importantes dont la méthode a besoin et ainsi de proposer plusieurs pistes de travail qui permettraient de rendre cet algorithme opérationnel sur données réelles. / Direct imaging of exoplanets provides valuable information about the light they emit, their interactions with their host star environment and their nature. In order to image such objects, advanced data processing tools adapted to the instrument are needed. In particular, the presence of quasi-static speckles in the images, due to optical aberrations distorting the light from the observed star, prevents planetary signals from being distinguished. In this thesis, I present two innovative image processing methods, both based on an inverse problem approach, enabling the disentanglement of the quasi-static speckles from the planetary signals. My work consisted of improving these two algorithms in order to be able to process on-sky images.The first one, called ANDROMEDA, is an algorithm dedicated to point source detection and characterization via a maximum likelihood approach. ANDROMEDA makes use of the temporal diversity provided by the image field rotation during the observation, to recognize the deterministic signature of a rotating companion over the stellar halo. From application of the original version on real data, I have proposed and qualified improvements in order to deal with the non-stable large scale structures due to the adaptative optics residuals and with the remaining level of correlated noise in the data. Once ANDROMEDA became operational on real data, I analyzed its performance and its sensitivity to the user-parameters proving the robustness of the algorithm. I also conducted a detailed comparison to the other algorithms widely used by the exoplanet imaging community today showing that ANDROMEDA is a competitive method with practical advantages. In particular, it is the only method that allows a fully unsupervised detection. By the numerous tests performed on different data set, ANDROMEDA proved its reliability and efficiency to extract companions in a rapid and systematic way (with only one user parameter to be tuned). From these applications, I identified several perspectives whose implementation could significantly improve the performance of the pipeline.The second algorithm, called MEDUSAE, consists in jointly estimating the aberrations (responsible for the speckle field) and the circumstellar objects by relying on a coronagraphic image formation model. MEDUSAE exploits the spectral diversity provided by multispectral data. In order to In order to refine the inversion strategy and probe the most critical parameters, I applied MEDUSAE on a simulated data set generated with the model used in the inversion. To investigate further the impact of the discrepancy between the image model used and the real images, I applied the method on realistic simulated images. At last, I applied MEDUSAE on real data and from the preliminary results obtained, I identified the important input required by the method and proposed leads that could be followed to make this algorithm operational to process on-sky data.
44

Nouvelle méthode de traitement d'images multispectrales fondée sur un modèle d'instrument pour la haut contraste : application à la détection d'exoplanètes / New method of multispectral image post-processing based on an instrument model for high contrast imaging systems : Application to exoplanet detection

Ygouf, Marie 06 December 2012 (has links)
Ce travail de thèse porte sur l'imagerie multispectrale à haut contraste pour la détection et la caractérisation directe d'exoplanètes. Dans ce contexte, le développement de méthodes innovantes de traitement d'images est indispensable afin d'éliminer les tavelures quasi-statiques dans l'image finale qui restent à ce jour, la principale limitation pour le haut contraste. Bien que les aberrations résiduelles instrumentales soient à l'origine de ces tavelures, aucune méthode de réduction de données n'utilise de modèle de formation d'image coronographique qui prend ces aberrations comme paramètres. L'approche adoptée dans cette thèse comprend le développement, dans un cadre bayésien, d'une méthode d'inversion fondée sur un modèle analytique d'imagerie coronographique. Cette méthode estime conjointement les aberrations instrumentales et l'objet d'intérêt, à savoir les exoplanètes, afin de séparer correctement ces deux contributions. L'étape d'estimation des aberrations à partir des images plan focal (ou phase retrieval en anglais), est la plus difficile car le modèle de réponse instrumentale sur l'axe dont elle dépend est fortement non-linéaire. Le développement et l'étude d'un modèle approché d'imagerie coronographique plus simple se sont donc révélés très utiles pour la compréhension du problème et m'ont inspiré des stratégies de minimisation. J'ai finalement pu tester ma méthode et d'estimer ses performances en terme de robustesse et de détection d'exoplanètes. Pour cela, je l'ai appliquée sur des images simulées et j'ai notamment étudié l'effet des différents paramètres du modèle d'imagerie utilisé. J'ai ainsi démontré que cette nouvelle méthode, associée à un schéma d'optimisation fondé sur une bonne connaissance du problème, peut fonctionner de manière relativement robuste, en dépit des difficultés de l'étape de phase retrieval. En particulier, elle permet de détecter des exoplanètes dans le cas d'images simulées avec un niveau de détection conforme à l'objectif de l'instrument SPHERE. Ce travail débouche sur de nombreuses perspectives dont celle de démontrer l'utilité de cette méthode sur des images simulées avec des coronographes plus réalistes et sur des images réelles de l'instrument SPHERE. De plus, l'extension de la méthode pour la caractérisation des exoplanètes est relativement aisée, tout comme son extension à l'étude d'objets plus étendus tels que les disques circumstellaire. Enfin, les résultats de ces études apporteront des enseignements importants pour le développement des futurs instruments. En particulier, les Extremely Large Telescopes soulèvent d'ores et déjà des défis techniques pour la nouvelle génération d'imageurs de planètes. Ces challenges pourront très probablement être relevés en partie grâce à des méthodes de traitement d'image fondées sur un modèle direct d'imagerie. / This research focuses on high contrast multispectral imaging in the view of directly detecting and characterizing Exoplanets. In this framework, the development of innovative image post-processing methods is essential in order to eliminate the quasi-static speckles in the final image, which remain the main limitation for high contrast. Even though the residual instrumental aberrations are responsible for these speckles, no post-processing method currently uses a model of coronagraphic imaging, which takes these aberrations as parameters. The research approach adopted includes the development of a method, in a Bayesian Framework, based on an analytical coronagraphic imaging model and an inversion algorithm, to estimate jointly the instrumental aberrations and the object of interest, i.e. the exoplanets, in order to separate properly these two contributions. The instrumental aberration estimation directly from focal plane images, also named phase retrieval, is the most difficult step because the model of on-axis instrumental response, of which these aberrations depend on, is highly non-linear. The development and the study of an approximate model of coronagraphic imaging thus proved very useful to understand the problem at hand and inspired me some minimization strategies. I finally tested my method and estimated its performances in terms of robustness and exoplanets detection. For this, I applied it to simulated images and I studied the effect of the different parameters of the imaging model I used. The findings from this research provide evidence that this method, in association with an optimization scheme based on a good knowledge of the problem at hand, can operate in a relatively robust way, despite the difficulties of the phase retrieval step. In particular, it allows the detection of exoplanets in the case of simulated images with a detection level compliant with the goal of the SPHERE instrument. The next steps will be to verify the efficiency of this new method on simulated images using more realistic coronagraphs and on real images from the SPHERE instrument. In addition, the extension of the method for the characterization of exoplanets is relatively easy, as its extension to the study of larger objects such as circumstellar disks. Finally, the results of this work will also bring some crucial insights for the development of future instruments. In particular, the Extremely Large Telescopes have already risen some technical challenges for the next generation of planet finders, which may partly be addressed by an image processing method based on an imaging model.
45

Caractérisation des disques de débris par imagerie directe et haute résolution angulaire : les performances de NaCo et SPHERE / Characterisation of debris discs in direct imaging and high angular resoltion : the performance of NaCo and SPHERE

Milli, Julien 23 September 2014 (has links)
Les vingt-cinq dernières années ont connu une véritable révolution dans notre connaissance des systèmes planétaires avec plus de 1800 planètes extrasolaires connues à ce jour. L'étude observationnelle des disques de débris constitue l'approche proposée dans ce travail de thèse pour éclairer les processus de formation et d'évolution des systèmes planétaires. Ces disques circumstellaires sont constitués de particules de poussière générées par des collisions de petits corps appelés planétésimaux, en orbite autour d'une étoile de la séquence principale. La lumière stellaire qu'elles diffusent représente une observable particulièrement riche en informations sur l'architecture du système, mais difficile d'accès en raison du contraste élevé et de la faible séparation angulaire avec leur étoile. Le développement récent de nouveaux instruments à haut contraste équipés d'optique adaptative extrême représente un formidable potentiel pour l'étude de ces systèmes. Cette thèse se place dans le cadre de ces nouveaux développements et porte sur la caractérisation des disques de débris grâce à deux instruments qui équipent le VLT (Very Large Telescope) : NaCo et SPHERE (Spectro Polarimetric High contrast Exoplanet REsearch). NaCo est en opération depuis plus de 10 ans et a connu plusieurs améliorations successives. SPHERE a été conçu et développé dans la même période, testé intensivement en laboratoire en 2013 et est actuellement en cours de vérification opérationnelle sur le télescope. Le caractère novateur de ce travail consiste à associer à l'étude des propriétés physiques des disques de débris, une expertise instrumentale poussée pour tirer le meilleur profit des observations. La première partie vise à développer et caractériser des méthodes de réduction de données innovantes adaptées aux observations de disques en lumière diffusée et au comportement de l'instrument. En particulier les atouts, performances et biais des techniques d'imagerie différentielle angulaire, polarimétrique et de soustraction de référence sont quantifiés. Ces méthodes sont appliquées, dans une seconde partie, à l'étude et la caractérisation de deux prototypes de disques de débris entourant les étoiles beta Pictoris et HR 4796A. Elles permettent une analyse poussée de la morphologie de ces disques et révèlent de nouvelles asymétries, interprétées en terme de perturbateurs gravitationnels ou de propriétés de diffusion de la lumière par la poussière. Enfin une évaluation prospective des performances attendues et observées avec l'instrument SPHERE est détaillée dans la dernière section, basée sur des simulations et des mesures en laboratoire ou sur le ciel. Une comparaison avec NaCo révèle les points forts de SPHERE avant de conclure sur les questions scientifiques auxquelles les observations de disques de débris avec SPHERE pourront apporter des réponses. / Over the last two and a half decades, the discovery of more than 1800 exoplanets has been a major breakthrough in our understanding of planetary systems. To shed light on the formation and evolution processes of such systems, I have chosen an observational approach based on the study of debris discs. These circumstellar discs are composed of dust particles constantly generated by collisions of small rocky bodies called planetesimals, orbiting a main-sequence star. The stellar light they scatter can be studied from the Earth and reveal a wealth of information on the architecture of the system. These observations are challenging because of the high contrast and the small angular separation between the disc and the star. The recent developments of new high-contrast instruments with extreme adaptive optic systems are therefore bringing new expectations for the study of these systems and set the framework of this PhD thesis. My work aims at characterising debris discs thanks to two instruments installed on the Very Large Telescope: NaCo and SPHERE (Spectro Polarimetric High contrast Exoplanet REsearch). NaCo has been in operation for more than a decade and has undergone many improvements. SPHERE has been designed and assembled in the same period, was intensively tested in laboratory in 2013, and is currently being commissioned on the telescope. The innovative approach of this PhD work is to combine the study of debris discs with strong instrumental expertise to get the best science results from the observations. The first part of the study aims at developing innovative data reduction techniques adapted to the observations of discs in scattered light and to the behaviour of the instrument. I quantify in particular the performances, advantages, and biases of the angular, polarimetric and reference-star differential imaging technique. In a next step, I apply those techniques to characterise two prototypes of debris discs, around the stars beta Pictoris and HR 4796A. A detailed analysis of the morphology is carried out, which reveals new asymmetries interpreted in terms of gravitational perturbers or of dust scattering properties. Lastly, I detail the expected and measured performances of SPHERE, from simulations, laboratory and on-sky measurements. A comparison with NaCo reveals the assets of SPHERE and I conclude with the scientific questions SPHERE will be able to answer with new debris disc observations.
46

Dissipation des marées thermiques atmosphériques dans les super-Terres / Tidal dissipation of thermal atmospheric tides in super-Earths

Auclair-Desrotour, Pierre 16 September 2016 (has links)
Cette thèse traite de la modélisation des marées fluides des planètes telluriques du système solaire et des systèmes exoplanétaires.En premier lieu, nous examinons la réponse de marée des couches atmosphériques, soumises au potentiel de marée gravifique et au forçage thermique de l’étoile hôte du système. Nous proposons un nouveau modèle global prenant en compte les processus dissipatifs avec un refroidissement newtonien, modèle à partir duquel nous traitons la dynamique des ondes de marées engendrées par ces forçages, et quantifions leur dissipation, le nombre de Love et le couple de marée exercé sur la couche atmosphérique en fonction de la fréquence de forçage. Ceci nous permet d'étudier l'ensemble des configurations possibles depuis les planètes au voisinage de la synchronisation telles que Vénus jusqu'aux rotateurs rapides tels que la Terre.En second lieu, nous développons une approche similaire pour les océans de planètes de type terrestre, où la friction visqueuse effective de la topographie est prise en compte, à partir de laquelle nous quantifions la réponse de marée d’un océan global potentiellement profond et sa dépendance à la fréquence d’excitation. Dans ce cadre, et ce grâce à des modèles locaux, nous caractérisons de manière détaillée les propriétés des spectres en fréquence de la dissipation engendrée par les ondes de marées au sein des couches fluides planétaires (et stellaires) en fonction des paramètres structurels et dynamiques de ces dernières (rotation, stratification, viscosité et diffusivité thermique). / This thesis deals with the modeling of fluid tides in terrestrial planets of the Solar system and exoplanetary systems.First, we examine the tidal response of atmospheric layers, submitted to the tidal gravitational potential and the thermal forcing of the host star of the system. We propose a new global model taking into account dissipative processes with a Newtonian cooling, model that we use to treat the dynamics of tidal waves generated by these forcings, and to quantify their dissipation, the Love number and the tidal torque exerted on the atmospheric layer as a function of the forcing frequency. This allows us to study possible configurations from planets close to synchronization such as Venus to rapid rotators such as the Earth.Second, we develop a similar approach for the oceans of terrestrial planets where the action of topography is taken into account thanks to an effective viscous friction. From this modeling, we quantify the tidal response of a potentially deep global ocean and its dependence of the tidal frequency. In this framework, and by using local models, we characterize in detail the properties of the frequency spectra of dissipation generated by tidal waves within fluid planetary (and stellar) layers as functions of the structural and dynamical parameters of these latters (rotation, stratification, viscosity and thermal diffusivity).
47

Characterization of exoplanetary systems with the direct imaging technique : towards the first results of SPHERE at the Very Large Telescope / Caractérisation des systèmes d'exoplanètes par imagerie directe : vers les premiers résultats de SPHERE sur le Very Large Telescope

Zurlo, Alice 01 June 2015 (has links)
Aujourd’hui, plus de 1800 planètes qui orbitent autour d’étoiles en dehors du système solaire ont été découvertes. La plupart des planètes découvertes actuellement a été révélée grâce aux méthodes indirectes. Par contre, avec ce type de techniques, la caractérisation des planètes ne peut pas être complète si on n’utilise pas plusieurs techniques simultanément. Aussi, pour obtenir le spectre de la planète, il doit y avoir un transit et même dans ce cas là,le signal est très faible par rapport au signal de l’étoile. L’observation directe de ces objets, appellée imagerie directe, est maintenant possible grâce à des systèmes très avancés d’optique adaptative installés sur des télescopes de classe 8m. L’imagerie directe permet l’observation des planètes sufisamment lumineuses et éloignées de l’étoile principale en utilisant un masque qui cache la lumière de la dernière. Cette technique est donc efficace en particulier pour des systèmes jeunes et voisins car la luminosité intrinsèque de la planète diminue avec l’âge et la séparation réelle de la planète dépend de la distance du système. Dans le VLT au Paranal (Chili), deux instruments sont dédiés à ce type de recherche : NACO et SPHERE. SPHERE a vu sa première lumière en Mai 2014, et est maintenant prêt à commencer une enquête consacrée à la découverte de planètes autour de systèmes jeunes et voisins, NIRSUR. Cet instrument se compose de trois sous-systèmes : IRDIS, IFS et ZIMPOL. / In the year of the 20th anniversary of the discovery of the first extrasolar planet we can count more than 1800 companions found with different techniques. The majority of them are indirect methods that infer the presence of an orbiting body by observing the parent star (radial velocity, transits, astrometry). In this work we explore the technique that permits to directly observe planets and retrieve their spectra, under the conditions that they are bright and far enough from their host star. Direct imaging is a new technique became possible thanks to a new generation of extreme adaptive optics instruments mounted on 8m class telescopes. On the Very Large Telescope two instruments dedicated to the research for exoplanets with direct imaging are now operative: NACO and SPHERE. This thesis will describe the development and results of SPHERE from its predecessor NACO to its integration in laboratory and the final on sky results.
48

Coronographie à masque adaptatif pour imagerie et détection à haute dynamique / Adaptive Mask Coronagraph for High Dynamic Range Imaging and Detection

Bourget, Pierre 05 December 2014 (has links)
L’imagerie à très haute dynamique s’applique à de nombreux domaines de recherche en astronomie et astrophysique. Cette problématique observationnelle est abordée sur plusieurs fronts par de nombreuses techniques complémentaires : coronographie, interferométrie, optique adaptative, controle de front d’onde et discrimination des speckles. La combinaison de celles ci permet d’atteindre un haut contraste avec pour ultime objectif l’imagerie d’exoplanètes et l’étude de l’environnement stellaire. Le travail présenté dans ce manuscrit se focalise sur la coronographie et plus particulièrement sur l’optimisation active du procedé d’occultation en fonction du contexte observationnel.La première partie de cette recherche traite de l’observation d’objets résolus par le développement d’un masque focal de Lyot de diamètre variable. La deuxième partie s’applique à étendre le concept du masque focal adaptatif au masque de phase de type Roddier pour l’observation de l’environnement proche d’objets non résolus. L’utilisation des propriétés des cristaux liquides permet de réaliser un déphasage par rotation de polarisation et une modulation de transmission à l’extérieur du masque. Cette modulation permet un controle actif d’optimisation de l’interférence pour une adéquation du masque au contexte observationnel : longueur d’onde, morphologie d’image et défauts intrinsèques au masque, agitation atmosphérique. La dernière partie de ce manuscrit ébauche de nouvelles perspectives quant à la possibilité d’une imagerie à haut contraste. La modulation temporelle de phase transmise par un masque focal adaptatif est mise à profit par l’utilisation des méthodes de détection synchrone. / High contrast imaging of extra-solar planets and environments of bright astro- physical objects in general, such as stars, active galactic nuclei or objects of the Solar System is a challenging task. Different approaches are needed if the bright region to occult is optically resolved or not. We present the Adaptive Mask concept, observations on sky and numerical simulations show the usefulness of the proposed methods to optimize the efficiency of the coronagraphs for optically resolved or non resolved objects. Accessing small IWA is considered as an edge as it provides substantial scientific and technical advantages. One of the difficulties of accessing small IWA is that coronagraphs become very sensitive to low-order aberrations such as tip-tilt. Our original approach aims at integrating the small IWA capability and the mitigation of sensitivity to low-order aberrations within the coronagraph itself. Our concept is applicable to both low and high Strehl regimes, corresponding to current and next generation AO systems. The adaptive coronagraph can adapt dynamically, in quasi real time, to adjust to the observing conditions to deliver a stable and optimized contrast at the science image level. The mask adaptability both in size, phase and amplitude also compensates for manufacturing errors of the mask itself, and potentially for chromatic effects. The mask adaptability concept using a local phase modulation in the focal plane allows synchronous modulation for high dynamic range synchronous detection of a faint target immersed in a background. The coherence of the speckles with the central star is used to discriminate them from proper companions.
49

Étude de l’influence de l’activité stellaire sur la spectroscopie de transit à basse résolution et des possibilités de mitigation par la haute résolution

Genest, Frédéric 11 1900 (has links)
La spectroscopie de transit est un outil puissant pour la caractérisation de l'atmosphère d'exoplanètes. Plusieurs phénomènes peuvent contaminer un spectre de transmission, dont l'hétérogénéité de la surface de l'étoile hôte due à l'activité stellaire. À basse résolution spectrale, la différence entre le cordon de transit et le reste de la surface y laisse des signatures qui pourraient être attribuées à tort à la planète. Les risques associés incluent des biais sur la mesure du rayon et des abondances atmosphériques de planètes. Afin de trouver une solution à ce problème, cette étude consiste à modéliser en détail des surfaces stellaires et des spectres de transit à basse et à très haute résolution. On cherche d'une part à qualifier l'ampleur du problème à basse résolution et, d'autre part, à déterminer si la haute résolution permet d'isoler la contamination stellaire et ainsi résoudre le problème. La modélisation se concentre sur trois types d'étoiles, entre K hâtive et M tardive. Les modèles confirment l'importance du problème et l'absence de solution évidente à basse résolution, principalement pour les étoiles M. À haute résolution, on parvient à séparer les signaux de la planète et de l'activité stellaire. Cela permet de briser l'ambiguïté à basse résolution, pourvu que la planète ait une variation de vitesse radiale suffisante durant le transit. Ces résultats soulignent la valeur d'un suivi à haute résolution lorsque possible. Même avec le télescope James-Webb, il sera difficile d'avoir totalement confiance en les résultats de caractérisation d'atmosphères utilisant des données à basse résolution. / Transit spectroscopy is a powerful tool for the characterisation of exoplanet atmospheres. There exist multiple sources of contamination for transmission spectra, including stellar activity induced surface heterogeneities on the host star. At low spectral resolution, differences between the transit chord and the rest of the surface leave signatures in the spectra, which could then be wrongly associated with the planet. This can introduce biases in radius and atmospheric abundance measurements of exoplanets. To solve this issue, this study consists in carefully modeling stellar surfaces and transit spectra at low and very high spectral resolution. We seek to, on one hand, understand the importance of the problem at low resolution, and, on the other hand, determine if high resolution allows us to isolate stellar contamination and thus solve this problem. Modeling is focused on three types of stars, from early K to late M. Models confirm the importance of the issue and the absence of an obvious solution at low resolution, especially for M stars. At high resolution, we manage to effectively split the planet and stellar activity signals. This allows us to break the ambiguity from low resolution, provided the planet experiences a sufficient radial velocity variation during transit. These results highlight the strong value of high resolution follow-ups when feasible. Even with the James-Webb space telescope, it will be difficult to fully trust the results of atmospheric abundance retrievals using low resolution data.
50

Dynamique résonante des systèmes de Super-Terres / Resonant dynamics of Super-Earth systems

Pichierri, Gabriele 23 September 2019 (has links)
Les observations de centaines de systèmes d’exoplanètes nous ont fourni un large échantillon de configurations orbitales. Les périodes orbitales figurent parmi les données les mieux connues et les plus étonnantes. Les Super-Terres, ces planètes caractérisées par une masse entre 1 et 20 masses terrestres et une période typiquement de moins de 100 jours, sont présentes autour de la plupart des étoiles. La distribution des rapports de leurs périodes orbitales défie les astrophysiciens : pendant leur formation et migration au sein de leur disque protoplanétaire, elles devraient former des chaînes de résonances de moyen mouvement, c’est-à-dire que les rapports des périodes orbitales de planètes voisines devraient être proches de fractions simples. Toutefois, la plupart des systèmes de Super-Terres ne sont pas résonants. Dans cette thèse, je traite les aspects clés des chaînes résonantes : leur formation, leur évolution et leur stabilité. Premièrement, j’introduis les idées modernes en théorie de formation planétaire, et les méthodes utilisées dans la thèse : la mécanique Hamiltonienne, le problème planétaire et la théorie perturbative. Deuxièmement, je présente le processus de capture en résonance de moyen mouvement du premier ordre k : k − 1 par migration convergente des planètes, avec une nouvelle description analytique de l’évolution planétaire qui en suit, et je décris la dynamique résonante dans le plan orbital commun. La description analytique est confirmée par des intégrations N-corps qui incluent les interactions disque-planète. Ensuite, je me base sur des résultats existants concernant l’évolution dissipative de deux planètes en résonance qui engendre la divergence de leurs demi-grands axes. Par une approche similaire, je présente une méthode statistique qui permet de déterminer dans quelle mesure l’architecture observée d’un système de trois planètes est compatible avec une histoire dynamique résonante dissipative. Je considère par la suite la stabilité des chaînes résonantes. Des études antérieures ont montré que l’absence de systèmes exoplanétaires résonants n’est pas en contradiction avec le modèle de capture en résonance par migration dans le disque, si une phase d’instabilité est très commune après la disparition du disque. On observe un taux d’instabilité plus élevé dans les systèmes synthétiques plus compacts et peuplés par des planètes plus massives. Des simulations N-corps dédiées à l’étude de la stabilité des chaînes résonantes ont montré qu’il y a une masse planétaire maximale qui garantit la stabilité ; cette masse limite diminue si les planètes sont plus massives et/ou si la chaîne résonante est plus compacte. J’étudie la stabilité des chaînes résonantes de planètes en fonction de leur masse commune, et j’examine de façon analytique et numérique des cas spécifiques de systèmes comprenant deux ou trois planètes. Je découvre un mécanisme dynamique qui peut déclencher une excitation du système, et qui mène à une phase de rencontres proches et collisions. Ce mécanisme se généralise à différents nombres de planètes et/ou à des chaînes résonantes plus ou moins compactes, et donne une prédiction analytique de la masse critique qui est en accord qualitatif avec les expériences numériques mentionnées précédemment. Enfin, je décris un scénario dynamique qui peut expliquer la pollution des naines blanches en éléments lourds. Les systèmes planétaires compacts peuvent devenir instables pendant la phase de perte de masse qui marque la fin de l’évolution stellaire, et les impacts entre planètes génèrent des débris. En m’appuyant sur des résultats précédents, je montre que l’excentricité orbitale des débris qui résident en résonance de moyen mouvement avec une planète externe peut devenir suffisamment élevée pour que les débris soient engloutis par l’étoile, ce qui peut expliquer la pollution observée. / Observations of hundreds of exoplanetary systems have produced a huge sample of orbital configurations, and the orbital periods are one of their better constrained and most astonishing properties. A common type of exoplanets are the Super-Earths, which have a mass between 1 and 20 Earth masses and a typical period of less than 100 days. The period ratio distribution of these planets poses a challenge to astrophysicists: during their formation, still embedded in the protoplanetary disc, we expect them to form chains of mean motion resonances, where the period ratio of neighbouring planets is close to a low-integer ratio. However, most Super-Earth systems are not close to resonance. In this thesis, I discuss key dynamical aspects of resonant chains: their formation, their evolution and their stability. I first give an overview of our current understanding of planetary formation, and an introduction of the methods used in the thesis: the tools of Hamiltonian dynamics, the planetary problem and perturbation theory. Then, I present the process of capture of planets migrating in protoplanetary discs into first order k : k − 1 mean motion resonances, including a novel analytical description of the corresponding planetary evolution, and I describe the relevant aspects of resonant dynamics in the planar approximation. The analytical treatment is supported by numerical N-body simulations which include the planet-disc interactions. Next, I expand on previous results on two-planet dissipative evolution in mean motion resonance and the resulting divergence of the planets’ semi-major axes. With a similar approach, I present a statistical method which allows to determine to what extent the observed architecture of a three-planet system is compatible with a dissipative resonant dynamical history. I then address the main problem of the stability of resonant chains. Previous works have shown that the over-all lack of resonances in the exoplanet sample is not in contradiction with resonant capture, if a post-disc phase of planetary instabilities is extremely common. Higher rates of instabilities are observed in synthetic systems where planets are most massive and the configurations most compact. Specific N-body experiments on the stability of resonant chains found that there is a critical planetary mass allowed for stability, which decreases with increasing number of planets and/or increasing value of k in the chain. The origin of these instabilities was however not discussed. I study the stability of resonant chains of equal-mass planets in terms of their mass, investigating analytically and numerically specific cases of two- and threeplanet systems. I find a dynamical mechanism which can trigger an excitation of the system, leading to mutual close-encounters and collisions. This can be generalised to an arbitrary number of planets and/or value of k in the resonant chain, and gives an analytical prediction for the critical mass allowed for stability which agrees qualitatively with the aforementioned numerical experiments. Finally, I describe a dynamical scenario that can explain the pollution of White Dwarfs with heavy elements. The idea is that compact planetary systems become unstable during the mass-loss phase characterising the end of the stellar evolution, so that impacts among planets lead to the generation of collisional debris. Expanding on previous works, I show that debris residing in mean motion resonance with an outer planetary perturber can have their orbital eccentricity excited to largeenough values to be engulfed by the host star, causing the observed pollution.

Page generated in 0.0442 seconds