• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anti-S2 Peptides and Antibodies Binding Effect on Myosin S2 and Anti-S2 Peptide's Ability to Reach the Cardiomyocytes in vivo and Interfere in Muscle Contraction

Quedan, Duaa Mohamad Alhaj Mahmoud 07 1900 (has links)
The anti-S2 peptides, the stabilizer and destabilizer, were designed to target myosin sub-fragment 2 (S2) in muscle. When the peptides are coupled to a heart-targeting molecule, they can reach the cardiomyocytes and interfere with cardiac muscle contraction. Monoclonal antibodies, MF20 and MF30, are also known to interact with light meromyosin and S2 respectively. The MF30 antibody compared to anti-S2 peptides and the MF20 antibody is used as a control to test the central hypothesis that: Both the anti-S2 peptides and antibodies bind to myosin S2 with high affinity, compete with MyBPC, and possibly interact with titin, in which case the anti-S2 peptides have further impact on myosin helicity and reach the heart with the aid of tannic acid to modulate cardiomyocytes' contraction in live mice. In this research, the effects of anti-S2 peptides and antibodies on myosin S2 were studied at the molecular and tissue levels. The anti-myosin binding mechanism to whole myosin was determined based on total internal reflectance fluorescence spectroscopy (TIRFS), and a modified cuvette was utilized to accommodate this experiment. The binding graphs indicated the cooperative binding of the peptides and antibodies with high affinity to myosin. Anti-myosin peptides and antibodies competition with Myosin Binding Protein C (MyBPC) was revealed through the super-resolution expansion microscopy using wildtype skeletal and cardiac myofibrils, and MyBPC knock-out cardiac myofibril. This new emerging technique depends on using the regular confocal microscope in imaging expanded myofibril after embedding in a swellable hydrogel polymer and digestion. A decrease in the fluorescent intensity at the C-zone was observed in myofibrils labeled with fluorescently labeled anti-S2 peptides or antibodies supporting the competition with MyBPC, which further was confirmed by the absence of this reduction at the C-zone in the knockout MyBPC cardiac tissue. The anti-S2 peptide's ability to reach inside the cardiomyocytes was tested by injecting fluorescently labeled anti-S2 peptides bound to tannic acid in live mice, the destabilizer peptide reached the heart 6X more than the stabilizer peptide. Some of the peptides labeled cardiac arterioles and T-tubules as detected by super-resolution microscopic images, meanwhile some peptides reached inside the cardiomyocytes and labeled some sarcomeres. This dissertation demonstrates the ability of anti-S2 peptides and antibodies in modifying myosin as they bind cooperatively with high affinity to myosin and compete with the regulatory protein MyBPC, in addition to the possible interaction between the stabilizer peptide and titin. Lastly, the peptides succeeded in labeling some cardiac sarcomeres in live mice.
2

Application of Biomimetic Membrane Models in Expansion Microscopy / Tillämpning av biomimetiska membranmodeller i expansionsmikroskopi

Thiagarajan, Praghadhesh January 2023 (has links)
Plasmamembranet är en komplex struktur som består av biomolekyler som lipider, proteiner och glykaner. Membranets rena komplexitet begränsar vår förmåga att förstå den spatiotemporala dynamiken hos sådana komponenter och deras kollektiva biofysiska membranparametrar. En sådan parameter som är svår att studera är asymmetri mellan lagren. Celler investerar mycket energi i den ojämna fördelningen av lipider mellan de inre och yttre lagren under olika cellulära händelser. Kunskapen om sådana parametrar kan vara av stor betydelse för förståelsen av cellers biologi och för att utveckla läkemedel och vacciner. Plasmamembranets tjocklek på 4-6 nm är en stor begränsande faktor eftersom det blir svårt att särskilja skillnaden mellan cytosoliska och exoplasmatiska signaler i plasmamembranet med fluorescent konfokalmikroskopi och superupplösande mikroskopi. I det här projektet använde jag MAP-expansionsmikroskopiprotokollet för att fysiskt öka avståndet mellan cytosoliska och exoplasmatiska lager, tillsammans med tvåfärgsmärkning av båda dessa strukturer för att förbättra deras visualisering. Biomimetiska cellmembranmodeller som Giant Plasma Membrane Vesicles (GPMVs), användes för att identifiera lämpliga märkningsstrategier. Klickkemibaserad märkningsstrategi valdes för exoplasmatisk märkning av lager och fluorescerande proteinbaserad märkning valdes för cytosolisk märkning av lager. GPMV-modellen användes för att identifiera de membranproteiner som specifikt aggregerar i de vätskestörda regionerna av membranet. MAP-expansionsprotokoll, när det utfördes på både celler och GPMV: er, visade att celler var mer tillförlitliga för expansion eftersom närvaron av cytoskeletts fysikalisk-mekaniska egenskaper som hjälper till med deras deformation. Expansionsfaktorn för MAP-protokollet beräknades till 3,3 med användning av kärnexpansion och en isotrop expansion observerades i densamma. Med denna expansionsfaktor och mer rödfärgsbaserade märkningsstrategier, antar jag att det skulle vara möjligt att visualisera asymmetrin mellan broschyrerna med hjälp av Superupplösande stimulerad emission utarmningsmikroskopi. / The plasma membrane is a complex structure comprised of biomolecules such as lipids, proteins, and glycans. The sheer complexity of the membrane limits our ability to understand the spatiotemporal dynamics of its components and their collective biophysical membrane parameters. One such parameter that is difficult to study is inter-leaflet asymmetry. Cells invest a lot of energy in the inhomogeneous distribution of lipids between the inner and outer leaflets during different cellular events. The knowledge of this parameter could be of great importance for understanding the membrane biology of cells and for designing drugs and vaccines. The 4-6nm thickness of the plasma membrane is a major limiting factor since it becomes difficult to distinguish the difference between the cytosolic and exoplasmic plasma membrane leaflet signals with fluorescence confocal and super-resolution microscopy. In this project, I employed the MAP expansion microscopy protocol to physically increase the distance between the cytosolic and the exoplasmic leaflets, coupled with two-colour labelling of both these structures to improve their visualization. Biomimetic cell membrane models like the Giant Plasma Membrane Vesicles (GPMVs), were used for identifying suitable labelling strategies. Click chemistry-based labelling strategy was chosen for exoplasmic leaflet labelling and fluorescent protein-based labelling was chosen for cytosolic leaflet labelling. The GPMV model was used to identify that the membrane proteins specifically aggregate in the liquid-disordered regions of the membrane. MAP expansion protocol, when performed on both cells and GPMVs, revealed cells to be more reliable for expansion, since the presence of cytoskeleton conferred physicomechanical properties to cells, aiding in their deformation. The expansion factor of the MAP protocol was calculated to be 3.3 using nuclear expansion and an isotropic expansion was observed in the same. With this expansion factor and more red dye-based labelling strategies, I hypothesize that it would be possible to visualize the inter-leaflet asymmetry using super-resolution Stimulated Emission Depletion microscopy.
3

In Vitro Photobehavior of Tyrosine Kinase Inhibitors in Solution and within Skin Cells

Ouardi el Hamidy, Meryem el 11 July 2024 (has links)
[ES] En las últimas décadas, la aprobación de los inhibidores de la tirosina quinasa (del inglés TKI) como una nueva clase de terapia dirigida ha mejorado la calidad de vida y las tasas de supervivencia de los pacientes con cáncer. Sin embargo, los efectos adversos asociados a éstos, como son las reacciones cutáneas, siguen siendo un desafío para la terapia controlada. De acuerdo con anteriores estudios fotofísicos y fotobiológicos de TKI realizados por el grupo de investigación, esta tesis sigue un enfoque multidisciplinar para investigar nuevos fármacos fotoactivos dentro de esta familia. En la etapa inicial, se seleccionaron cuatro TKI, gefitinib, axitinib, dasatinib y avapritinib, por su capacidad para absorber luz UVA y por su potencial fototóxico. Los estudios, tanto fotofísicos como fotobiológicos, se llevaron a cabo en estos fármacos. Gefitinib (GFT), un TKI con un cromóforo quinazolina, reveló cambios significativos en la fototoxicidad debido a modificaciones metabólicas en su estructura. Así, la desalquilación de la cadena lateral propoxi-morfolina (DMOR-GFT) presentó el valor más alto de factor de fotoirritación (PIF), aprox. 48, mientras que el metabolito desmetilado (DMT-GFT) mostró un valor de PIF mucho menor (~7), casi la mitad del valor de PIF del fármaco inalterado (~13). Por el contrario, el metabolito que presenta un grupo hidroxilo en lugar de flúor (DF-GFT) resultó no ser fototóxico. Notablemente, solo se confirmó que DMOR-GFT induce fotoperoxidación lipídica mediante un mecanismo oxidativo de Tipo I, basado en la escasa producción de oxígeno singlete y la eficiente desactivación del estado excitado triplete por un modelo lipídico. La fotooxidación de proteínas se evidenció en el caso de GFT y, en menor medida, en DMOR-GFT, pero resultó insignificante para DMT-GFT. Sin embargo, a diferencia de GFT, el daño al ADN inducido por el metabolito desmetilado no se reparó incluso después de varias horas. Axitinib (AXT), comercialmente disponible como el isómero (E)-AXT, tiende a fotoisomerizar a (Z)-AXT, especialmente en presencia de proteínas. Así, se revelaron dos mecanismos de fototoxicidad. En primer lugar, la conversión del (E)-AXT (no citotóxico) en el (Z)-AXT (citotóxico) tras irradiación. En segundo lugar, la fototoxicidad intrínseca exhibida por (Z)-AXT. Además, la fotooxidación de proteínas se atribuyó al isómero Z debido a la similitud en el contenido de carbonilo entre ambos isómeros y la alta afinidad del isómero Z por las proteínas. Finalmente, la fotogenotoxicidad solo se reveló mediante la detección de histonas ¿-H2AX. Dasatinib (DAS) es un TKI propuesto para el uso tópico en enfermedades cutáneas. Tras establecer un PIF inicial de 5, se confirmó la fototoxicidad de DAS en una emulsión oleo-acuosa en epidermis humana reconstruida (RhE), la cual se redujo sustancialmente al incorporar un filtro solar de amplio espectro. DAS presenta capacidad de generar tanto oxígeno singlete como radicales, desencadenando fotooxidación tanto en lípidos como en proteínas. Asimismo, se evidenció daño fotoinducido al ADN tanto mediante el ensayo cometa como la detección de ¿-H2AX. Avapritinib (AVP), un TKI de nueva aprobación, demostró ser un fármaco fototóxico con un valor de PIF de aproximadamente 11. Además, fue capaz de inducir tanto fotooxidación a las proteínas como daño en el ADN. En definitiva, el estudio de la toxicidad cutánea de los TKI en combinación con la luz solar se llevó a cabo mediante una exhaustiva evaluación de su fotocomportamiento tanto en disolución como en células de piel. El objetivo es proporcionar a los profesionales de la salud información actualizada sobre la foto(geno)toxicidad y alentarlos a evaluar e implementar estrategias de fotoprotección para los pacientes sometidos a la terapia basada en TKI. / [CA] En les últimes dècades, l'aparició d'inhibidors de la tirosina cinasa (de l'anglès TKI) com una nova classe de teràpia dirigida ha millorat la qualitat de vida i les taxes de supervivència dels pacients amb càncer. No obstant això, els efectes adversos associats a aquests, com les reaccions cutànies, continuen sent un desafiament per a la teràpia controlada. D'acord amb estudis fotofísics i fotobiològics prèvis de TKI realitzats pel grup de recerca, esta tesi segueix un enfocament multidisciplinari per a investigar nous fàrmacs fotoactius dins d¿aquesta familia. En l'etapa inicial, es van seleccionar quatre TKI, gefitinib, axitinib, dasatinib i avapritinib, per la seua capacitat per absorbir llum en la regió UVA i el seu potencial fototòxic. Gefitinib (GFT), un TKI amb un cromòfor quinazolina, va experimentar canvis significatius en la fototoxicitat a causa de modificacions metabòliques en la seua estructura. La desalquilació de la cadena lateral propoxi-morfolina (DMOR-GFT) va presentar el valor més alt de factor de fotoirritació (PIF), aprox. 48, mentre que el metabòlit desmetilat (DMT-GFT) va mostrar un valor de PIF molt menor (~7), quasi la meitat del valor de PIF del fàrmac inalterat (aprox. 13). Al contrari, el metabòlit que presenta un grup hidroxil en lloc de fluor (DF-GFT) va resultar no ser fototòxic. Notablement, només es va confirmar que DMOR-GFT induïx fotoperoxidació lipídica mitjançant un mecanisme oxidatiu de Tipus I, basat en l'escassa producció d'oxigen singlet i l'eficient desactivació de l'estat excitat triplet per un model lipídic. La fotooxidació de proteïnes va ser evident per a GFT i, en menor mesura, per a DMOR-GFT, però va resultar insignificant per a DMT-GFT. No obstant això, a diferència de GFT, el dany a l'ADN induït pel metabòlit desmetilat no es va reparar fins i tot després de diverses hores. Axitinib (AXT), comercialment disponible com a (E)-AXT, tendeix a fotoisomeritzar a (Z)-AXT, especialment en presència de proteïnes. Així, es van revelar dos mecanismes de fototoxicitat. En primer lloc, la conversió de l'(E)-AXT (no citotòxic) en el (Z)-AXT (citotòxic) després d'irradiació. En segon lloc, la fototoxicitat intrínseca exhibida per (Z)-AXT. A més, la fotooxidació de proteïnes es va atribuir a l'isòmer Z a causa de la similitud en el contingut de carbonil entre ambdós isòmers i l'alta afinitat de l'isòmer Z per les proteïnes. Finalment, la fotogenotoxicitat només es va revelar mitjançant la detecció de histones ¿-H2AX. Dasatinib (DAS) és un TKI proposat per a l'ús tòpic en malalties cutànies. Després d'establir un PIF inicial de 5, es va confirmar la fototoxicitat de DAS en una emulsió oli-aquosa en epidermis humana reconstituïda (RhE), la qual es va reduir substancialment en incorporar un filtre solar d'ample espectre. DAS presenta capacitat de generar tant oxigen singlet com radicals, desencadenant la fotooxidació tant en lípids com en proteïnes. Així mateix, es va evidenciar mitjançant l'assaig cometa i la detecció d'H2AX dany fotoinduït a l'ADN. Avapritinib (AVP), un TKI de segona generació, va demostrar ser un fàrmac fototòxic amb un valor PIF d'aproximadament 11. A més, va ser capaç d'induir tant la fotooxidació a les proteïnes com induir dany en l'ADN. En definitiva, l'estudi de la toxicitat cutània dels TKI en combinació amb la radiació solar es va dur a terme mitjançant una exhaustiva avaluació del seu fotocomportament tant en dissolució como en cèl·lules de pell. L'objectiu és proporcionar als professionals de la salut informació actualitzada sobre foto(geno)toxicitat i fomentar l'avaluació e implementació d'estratègies de fotoprotecció per als pacients sotmesos a la teràpia basada en TKI. / [EN] In recent decades, the emerge of tyrosine kinase inhibitors (TKIs) as a new class of targeted therapy has substantially enhanced the quality of life and survival rates for cancer patients. However, associated adverse effects, such as dermatological reactions, remain a challenge to sustained therapy. In light of our research group established insights into the photophysical and photobiological aspects of some TKIs, this thesis follows a similar multidisciplinary approach to investigate other photoactive drugs within the TKI family. In the initial stage, four TKIs, gefitinib, axitinib, dasatinib, and avapritinib, were selected based on their ability to absorb in the UVA region of the solar spectrum and their phototoxic potential. Consequently, photophysical and photobiological studies were conducted on these TKIs. Gefitinib (GFT) is a TKI with a quinazoline moiety, in which modifications resulting from metabolism significantly alter the phototoxicity potential. Dealkylation of the propoxy-morpholine side chain (DMOR-GFT) exhibited the highest photoirritant value (PIF), reaching approximately 48, while the demethylated metabolite (DMT-GFT) displayed much lower phototoxicity (PIF ~7), nearly half the PIF value of the parent drug (ca. 13). In contrast, replacing the fluorine substituent with OH (DF-GFT) resulted in the absence of phototoxic activity. Surprisingly, only DMOR-GFT was confirmed to induce lipid photoperoxidation which occurred through a Type I oxidative mechanism, based on the weak singlet oxygen production and the efficient quenching of the triplet excited state by a lipid model. Furthermore, protein photooxidation was evident for GFT and, to a lesser extent, for DMOR-GFT, but negligible for DMT-GFT. However, unlike the parent drug, DNA photodamage induced by the demethylated metabolite exhibited limited repair even after several hours. Axitinib (AXT), commercially available as (E)-AXT, showed a tendency for photoisomerization to (Z)-AXT, particularly within proteins. Thus, two phototoxicity mechanisms were unveiled. Firstly, the transformation of the initially non-cytotoxic (E)-AXT into the cytotoxic (Z)-AXT upon radiation. Secondly, the intrinsic phototoxicity exhibited by (Z)-AXT. Moreover, protein photooxidation was unequivocally attributed to the (Z)-isomer due to the similarity in carbonyl content between E/Z-isomers and the high protein affinity of the (Z)-isomer. Finally, the photogenotoxicity was only revealed through the detection of ¿-H2AX histone foci. Dasatinib (DAS) is a TKI suggested for topical treatment of dermatological diseases. Given this context and having determined a PIF value ca. 5, an evaluation of DAS phototoxicity in reconstructed human epidermis (RhE) was conducted. DAS formulated in an oil-in-water emulsion exhibited high phototoxicity, which was substantially reduced upon incorporating a broad-spectrum sunscreen. DAS, capable to generate both singlet oxygen and radicals, triggered photooxidation in both lipids and proteins. Similarly, DNA photodamage was evidenced through comet assay and H2AX foci detection. Avapritinib (AVP), a newly approved TKI, was proven to be a phototoxic drug with a PIF value ca. 11, which was highly photooxidative toward proteins and capable to induce DNA photodamage. All in all, the study of skin toxicity of TKIs in combination with sunlight was achieved through a comprehensive evaluation of their photobehavior both in solution and within skin cells. The aim is to provide healthcare professionals with updated information on photo(geno)toxicity and encourage them to assess and implement photoprotection strategies for patients undergoing TKI-based therapy. / Agradezco a la Universitat Politècnica de València por la ayuda para la formación de doctores dentro del subprograma 1 (PAID-1- 2019) y al Ministerio de Ciencia, Innovación y Universidades por la ayuda para la formación del profesorado universitario (FPU19/00048). Ambas subvenciones resultaron fundamentales para la elaboración de mi tesis doctoral. / Ouardi El Hamidy, ME. (2024). In Vitro Photobehavior of Tyrosine Kinase Inhibitors in Solution and within Skin Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/206167

Page generated in 0.1065 seconds