• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 8
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Beslutstagande under risk inom svenska bostadsaktiebolag : En kvantitativ studie före och efter implementeringen av Lag (2010:879) om allmännyttiga bostadsaktiebolag

Dahlgren, Simon, Heglert, Anton January 2016 (has links)
Svensk bostadsmarknad har länge präglats av en snedvriden konkurrens med en markant fördel till Sveriges kommunala allmännyttiga bostadsaktiebolag jämte de privata bostadsaktiebolagen. I syfte att utjämna existerande sektoriella diskrepanser och skapa en konkurrensneutral marknad med jämlika villkor för privata respektive kommunala bostadsaktiebolag, infördes per den 1:a januari år 2011, Lag (2010:879) om allmännyttiga bostadsaktiebolag. Lagen innebär för de kommunala bostadsaktiebolagen ett avsteg från den tidigare självkostnadsprincipen mot ett i högre grad affärsmässig agerande enligt vinstdrivande syfte. Denna studie avser utifrån sambandet mellan risk och avkastning inom svenska bostadsaktiebolag, undersöka huruvida svenska kommunala allmännyttiga bostadsaktiebolag efter införandet av lagen uppvisar ett mer affärsmässigt agerande i termer om risk och avkastning på totalt kapital. Studiens teoretiska utgångspunkter tar huvudsakligen ansats i prospektteorin samt den förväntade nyttoteorin, vilka utgör två välrenommerade modeller i syfte att förklara beslutstagande under risk. Den förväntade nyttoteorin antar att individer är rationella nyttomaximerare och därefter agerar antingen riskaversivt, risksökande eller riskneutralt. Prospektteorin hävdar i motsats till den förväntade nyttoteorin att individen kan vara en kombination av riskaversiv, risksökande och riskneutral. Varav individen således inte alltid antas agera rationellt. Författarna har funnit flertalet tidigare forskare vilka genom perspektivet av den strategiska företagsledningen, bevisat stöd för prospektteorin som förklarande modell av beslutstagande under risk på företagsnivå, inom och mellan olika branscher. Därmed ställer författarna följande frågeställning: Uppvisar Sveriges kommunala allmännyttiga bostadsaktiebolag ett i högre grad affärsmässigt riskbeteende efter införandet av Lag (2010:879) om allmännyttiga bostadsaktiebolag? Utifrån sekundärdata insamlad via databasen Retriever Business har ett kvantitativt metodangrepp tillämpats i syfte att besvara studiens framställda hypoteser. Insamlad data består av de svenska bostadsaktiebolagens årliga avkastning på totalt kapital för tidsperioden 2006-2010 samt 2011-2014. Det empiriska materialet har vidare analyserats genom korstabeller, rangkorrelationer samt deskriptiv statistik. Resultatet visade att prospektteorin utgör ett bra alternativ som deskriptiv modell av beslutstagande under risk inom svenska bostadsaktiebolag. Enligt prospektteorin påvisades att svenska bostadsaktiebolags riskbeteende varierar beroende på bolagets branschallokering i förhållande till branschens genomsnittliga prestation, varav den strategiska företagsledningen inom svenska bostadsaktiebolag kan antas vara en sammanslagning av både risksökande och riskaversiva. Därmed motsäger resultatet den förväntade nyttoteorins antaganden om att individen alltid agerar rationellt. Vidare påvisade jämförelse av de kommunala bostadsaktiebolagens riskbeteende före och efter reformen att de kommunala bostadsaktiebolagens riskbeteende inte påverkats i större utsträckning, varför indikationer ges att allmännyttiga bostadsaktiebolag inte agerar i högre grad affärsmässigt efter Lag (2010:879) om allmännyttiga bostadsaktiebolag.
12

Utilitarian Approaches for Multi-Metric Optimization in VLSI Circuit Design and Spatial Clustering

Gupta, Upavan 30 May 2008 (has links)
In the field of VLSI circuit optimization, the scaling of semiconductor devices has led to the miniaturization of the feature sizes resulting in a significant increase in the integration density and size of the circuits. At the nanometer level, due to the effects of manufacturing process variations, the design optimization process has transitioned from the deterministic domain to the stochastic domain, and the inter-relationships among the specification parameters like delay, power, reliability, noise and area have become more intricate. New methods are required to examine these metrics in a unified manner, thus necessitating the need for multi-metric optimization. The optimization algorithms need to be accurate and efficient enough to handle large circuits. As the size of an optimization problem increases significantly, the ability to cluster the design metrics or the parameters of the problem for computational efficiency as well as better analysis of possible trade-offs becomes critical. In this dissertation research, several utilitarian methods are investigated for variation aware multi-metric optimization in VLSI circuit design and spatial pattern clustering. A novel algorithm based on the concepts of utility theory and risk minimization is developed for variation aware multi-metric optimization of delay, power and crosstalk noise, through gate sizing. The algorithm can model device and interconnect variations independent of the underlying distributions and works by identifying a deterministic linear equivalent model from a fundamentally stochastic optimization problem. Furthermore, a multi-metric gate sizing optimization framework is developed that is independent of the optimization methodology, and can be implemented using any mathematical programming approach. It is generalized and reconfigurable such that the metrics can be selected, removed, or prioritized for relative importance depending upon the design requirements. In multi-objective optimization, the existence of multiple conflicting objectives makes the clustering problem challenging. Since game theory provides a natural framework for examining conflicting situations, a game theoretic algorithm for multi-objective clustering is introduced in this dissertation research. The problem of multi-metric clustering is formulated as a normal form multi-step game and solved using Nash equilibrium theory. This algorithm has useful applications in several engineering and multi-disciplinary domains which is illustrated by its mapping to the problem of robot team formation in the field in multi-emergency search and rescue. The various algorithms developed in this dissertation achieve significantly better optimization and run times as compared to other methods, ensure high utility levels, are deterministic in nature and hence can be applied to very large designs. The algorithms have been rigorously tested on the appropriate benchmarks and data sets to establish their efficacy as feasible solution methods. Various quantitative sensitivity analysis have been performed to identify the inter-relationships between the various design parameters.
13

Risk Measures Constituting Risk Metrics for Decision Making in the Chemical Process Industry

Prem, Katherine 2010 December 1900 (has links)
The occurrence of catastrophic incidents in the process industry leave a marked legacy of resulting in staggering economic and societal losses incurred by the company, the government and the society. The work described herein is a novel approach proposed to help predict and mitigate potential catastrophes from occurring and for understanding the stakes at risk for better risk informed decision making. The methodology includes societal impact as risk measures along with tangible asset damage monetization. Predicting incidents as leading metrics is pivotal to improving plant processes and, for individual and societal safety in the vicinity of the plant (portfolio). From this study it can be concluded that the comprehensive judgments of all the risks and losses should entail the analysis of the overall results of all possible incident scenarios. Value-at-Risk (VaR) is most suitable as an overall measure for many scenarios and for large number of portfolio assets. FN-curves and F$-curves can be correlated and this is very beneficial for understanding the trends of historical incidents in the U.S. chemical process industry. Analyzing historical databases can provide valuable information on the incident occurrences and their consequences as lagging metrics (or lagging indicators) for the mitigation of the portfolio risks. From this study it can be concluded that there is a strong statistical relationship between the different consequence tiers of the safety pyramid and Heinrich‘s safety pyramid is comparable to data mined from the HSEES database. Furthermore, any chemical plant operation is robust only when a strategic balance is struck between optimal plant operations and, maintaining health, safety and sustaining environment. The balance emerges from choosing the best option amidst several conflicting parameters. Strategies for normative decision making should be utilized for making choices under uncertainty. Hence, decision theory is utilized here for laying the framework for choice making of optimum portfolio option among several competing portfolios. For understanding the strategic interactions of the different contributing representative sets that play a key role in determining the most preferred action for optimum production and safety, the concepts of game theory are utilized and framework has been provided as novel application to chemical process industry.
14

Choice Under Uncertainty: Violations of Optimality in Decision Making

Rodenburg, Kathleen 11 June 2013 (has links)
This thesis is an investigation of how subjects behave in an individual binary choice decision task with the option to purchase or observe for free additional information before reaching a decision. In part 1 of this thesis, an investigative study is conducted with the intent to sharpen the view to literature concerning corresponding psychology and economics experiments designed to test decision tasks that involve purchasing and observing information from an imperfect message prior to taking a terminal action choice. This investigative study identifies areas of research that warrant further investigation as well as provides enhancements for execution in the subsequent experiment conducted in Part 2 & 3 of this thesis. In Part 2 & 3, I conduct an experiment to test how subjects behave in an individual binary choice decision task with the option to purchase or observe for free additional information before reaching a final decision. I find that subjects’ behaviour over time converges toward optimal decisions prior to observing an imperfect information signal. However, when subjects observe an imperfect information signal prior to their terminal choice there is greater deviation from optimal behaviour. I find in addition to behaviour that is reflective of a risk-neutral BEU maximizer, status quo bias, over-weighing the informational value of the message received and past statistically independent outcomes influencing future choices. The subjects’ willingness to pay (WTP) to use the additional information gathered from an imperfect message service when making a final decision was on average less than the risk neutral BEU willingness to pay benchmark. Moreover, as the informative value of the message increased, causing the BEU valuation to increase, subjects under-estimated the value of the message signal to a greater degree. Although risk attitudes may have influenced the subjects’ WTP decisions, it does not account for the increased conservative WTP behaviour when information became more valuable. Additionally, the findings from this study suggest that individuals adopt different decision rules depending on both personal attributes (i.e. skillset, gender, experience) and on the context and environment in which the decision task is conducted. / SSHRC grant: Social Sciences and Humanities Research Council via Dr. Bram Cadsby Professor Department of Economics, University of Guelph
15

Ekonomické a psychologické aspekty rozhodování a chování jedince / Economic and Psychological Aspects of a Consumer's Behaviour and Decision-Making

Kašová, Jana January 2009 (has links)
The dissertation called Economic and Psychological Aspects of a Consumer's Behaviour and Decision-Making is dedicated to a consumer's behaviour and decision-making in economic and financial issues from the perspective of classic economy, psychology and behavioural economy. The theoretical part describes the expected utility theory and psychological findings on one hand, and presents the so called Prospect Theory and systematic biases on the other hand. The practical part comprises a research. Mission of the questionnaire survey is to find out whether behaviour and decision-making are rational and correspond with the classic economy theory or whether consumers behave irrationally and verify presumptions of behavioural economy.
16

A Customer Value Assessment Process (CVAP) for Ballistic Missile Defense

Hernandez, Alex 01 June 2015 (has links) (PDF)
A systematic customer value assessment process (CVAP) was developed to give system engineering teams the capability to qualitatively and quantitatively assess customer values. It also provides processes and techniques used to create and identify alternatives, evaluate alternatives in terms of effectiveness, cost, and risk. The ultimate goal is to provide customers (or decision makers) with objective and traceable procurement recommendations. The creation of CVAP was driven by an industry need to provide ballistic missile defense (BMD) customers with a value proposition of contractors’ BMD systems. The information that outputs from CVAP can be used to guide BMD contractors in formulating a value proposition, which is used to steer customers to procure their BMD system(s) instead of competing system(s). The outputs from CVAP also illuminate areas where systems can be improved to stay relevant with customer values by identifying capability gaps. CVAP incorporates proven approaches and techniques appropriate for military applications. However, CVAP is adaptable and may be applied to business, engineering, and even personal every-day decision problems and opportunities. CVAP is based on the systems decision process (SDP) developed by Gregory S. Parnell and other systems engineering faculty at the Unites States Military Academy (USMA). SDP combines Value-Focused Thinking (VFT) decision analysis philosophy with Multi-Objective Decision Analysis (MODA) quantitative analysis of alternatives. CVAP improves SDP’s qualitative value model by implementing Quality Function Deployment (QFD), solution design implements creative problem solving techniques, and the qualitative value model by adding cost analysis and risk assessment processes practiced by the U.S DoD and industry. CVAP and SDP fundamentally differ from other decision making approaches, like the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), by distinctly separating the value/utility function assessment process with the ranking of alternatives. This explicit value assessment allows for straightforward traceability of the specific factors that influence decisions, which illuminates the tradeoffs involved in making decisions with multiple objectives. CVAP is intended to be a decision support tool with the ultimate purpose of helping decision makers attain the best solution and understanding the differences between the alternatives. CVAP does not include any processes for implementation of the alternative that the customer selects. CVAP is applied to ballistic missile defense (BMD) to give contractors ideas on how to use it. An introduction of BMD, unique BMD challenges, and how CVAP can improve the BMD decision making process is presented. Each phase of CVAP is applied to the BMD decision environment. CVAP is applied to a fictitious BMD example.
17

Multialternative Decision Field Theory Model Fitting Using Different Measures of Attribute Weighting

Zhang, Ruohui 14 July 2015 (has links)
No description available.
18

Extração de preferências por meio de avaliações de comportamentos observados. / Preference elicitation using evaluation over observed behaviours.

Silva, Valdinei Freire da 07 April 2009 (has links)
Recentemente, várias tarefas tem sido delegadas a sistemas computacionais, principalmente quando sistemas computacionais são mais confiáveis ou quando as tarefas não são adequadas para seres humanos. O uso de extração de preferências ajuda a realizar a delegação, permitindo que mesmo pessoas leigas possam programar facilmente um sistema computacional com suas preferências. As preferências de uma pessoa são obtidas por meio de respostas para questões específicas, que são formuladas pelo próprio sistema computacional. A pessoa age como um usuário do sistema computacional, enquanto este é visto como um agente que age no lugar da pessoa. A estrutura e contexto das questões são apontadas como fonte de variações das respostas do usuário, e tais variações podem impossibilitar a factibilidade da extração de preferências. Uma forma de evitar tais variações é questionar um usuário sobre a sua preferência entre dois comportamentos observados por ele. A questão de avaliar relativamente comportamentos observados é mais simples e transparente ao usuário, diminuindo as possíveis variações, mas pode não ser fácil para o agente interpretar tais avaliações. Se existem divergências entre as percepções do agente e do usuário, o agente pode ficar impossibilitado de aprender as preferências do usuário. As avaliações são geradas com base nas percepções do usuário, mas tudo que um agente pode fazer é relacionar tais avaliações às suas próprias percepções. Um outro problema é que questões, que são expostas ao usuário por meio de comportamentos demonstrados, são agora restritas pela dinâmica do ambiente e um comportamento não pode ser escolhido arbitrariamente. O comportamento deve ser factível e uma política de ação deve ser executada no ambiente para que um comportamento seja demonstrado. Enquanto o primeiro problema influencia a inferência de como o usuário avalia comportamentos, o segundo problema influencia quão rápido e acurado o processo de aprendizado pode ser feito. Esta tese propõe o problema de Extração de Preferências com base em Comportamentos Observados utilizando o arcabouço de Processos Markovianos de Decisão, desenvolvendo propriedades teóricas em tal arcabouço que viabilizam computacionalmente tal problema. O problema de diferentes percepções é analisado e soluções restritas são desenvolvidas. O problema de demonstração de comportamentos é analisado utilizando formulação de questões com base em políticas estacionárias e replanejamento de políticas, sendo implementados algoritmos com ambas soluções para resolver a extração de preferências em um cenário sob condições restritas. / Recently, computer systems have been delegated to accomplish a variety of tasks, when the computer system can be more reliable or when the task is not suitable or not recommended for a human being. The use of preference elicitation in computational systems helps to improve such delegation, enabling lay people to program easily a computer system with their own preference. The preference of a person is elicited through his answers to specific questions, that the computer system formulates by itself. The person acts as an user of the computer system, whereas the computer system can be seen as an agent that acts in place of the person. The structure and context of the questions have been pointed as sources of variance regarding the users answers, and such variance can jeopardize the feasibility of preference elicitation. An attempt to avoid such variance is asking an user to choose between two behaviours that were observed by himself. Evaluating relatively observed behaviours turn questions more transparent and simpler for the user, decreasing the variance effect, but it might not be easier interpreting such evaluations. If divergences between agents and users perceptions occur, the agent may not be able to learn the users preference. Evaluations are generated regarding users perception, but all an agent can do is to relate such evaluation to his own perception. Another issue is that questions, which are exposed to the user through behaviours, are now constrained by the environment dynamics and a behaviour cannot be chosen arbitrarily, but the behaviour must be feasible and a policy must be executed in order to achieve a behaviour. Whereas the first issue influences the inference regarding users evaluation, the second problem influences how fast and accurate the learning process can be made. This thesis proposes the problem of Preference Elicitation under Evaluations over Observed Behaviours using the Markov Decision Process framework and theoretic properties in such framework are developed in order to turn such problem computationally feasible. The problem o different perceptions is analysed and constraint solutions are developed. The problem of demonstrating a behaviour is considered under the formulation of question based on stationary policies and non-stationary policies. Both type of questions was implemented and tested to solve the preference elicitation in a scenario with constraint conditions.
19

Extração de preferências por meio de avaliações de comportamentos observados. / Preference elicitation using evaluation over observed behaviours.

Valdinei Freire da Silva 07 April 2009 (has links)
Recentemente, várias tarefas tem sido delegadas a sistemas computacionais, principalmente quando sistemas computacionais são mais confiáveis ou quando as tarefas não são adequadas para seres humanos. O uso de extração de preferências ajuda a realizar a delegação, permitindo que mesmo pessoas leigas possam programar facilmente um sistema computacional com suas preferências. As preferências de uma pessoa são obtidas por meio de respostas para questões específicas, que são formuladas pelo próprio sistema computacional. A pessoa age como um usuário do sistema computacional, enquanto este é visto como um agente que age no lugar da pessoa. A estrutura e contexto das questões são apontadas como fonte de variações das respostas do usuário, e tais variações podem impossibilitar a factibilidade da extração de preferências. Uma forma de evitar tais variações é questionar um usuário sobre a sua preferência entre dois comportamentos observados por ele. A questão de avaliar relativamente comportamentos observados é mais simples e transparente ao usuário, diminuindo as possíveis variações, mas pode não ser fácil para o agente interpretar tais avaliações. Se existem divergências entre as percepções do agente e do usuário, o agente pode ficar impossibilitado de aprender as preferências do usuário. As avaliações são geradas com base nas percepções do usuário, mas tudo que um agente pode fazer é relacionar tais avaliações às suas próprias percepções. Um outro problema é que questões, que são expostas ao usuário por meio de comportamentos demonstrados, são agora restritas pela dinâmica do ambiente e um comportamento não pode ser escolhido arbitrariamente. O comportamento deve ser factível e uma política de ação deve ser executada no ambiente para que um comportamento seja demonstrado. Enquanto o primeiro problema influencia a inferência de como o usuário avalia comportamentos, o segundo problema influencia quão rápido e acurado o processo de aprendizado pode ser feito. Esta tese propõe o problema de Extração de Preferências com base em Comportamentos Observados utilizando o arcabouço de Processos Markovianos de Decisão, desenvolvendo propriedades teóricas em tal arcabouço que viabilizam computacionalmente tal problema. O problema de diferentes percepções é analisado e soluções restritas são desenvolvidas. O problema de demonstração de comportamentos é analisado utilizando formulação de questões com base em políticas estacionárias e replanejamento de políticas, sendo implementados algoritmos com ambas soluções para resolver a extração de preferências em um cenário sob condições restritas. / Recently, computer systems have been delegated to accomplish a variety of tasks, when the computer system can be more reliable or when the task is not suitable or not recommended for a human being. The use of preference elicitation in computational systems helps to improve such delegation, enabling lay people to program easily a computer system with their own preference. The preference of a person is elicited through his answers to specific questions, that the computer system formulates by itself. The person acts as an user of the computer system, whereas the computer system can be seen as an agent that acts in place of the person. The structure and context of the questions have been pointed as sources of variance regarding the users answers, and such variance can jeopardize the feasibility of preference elicitation. An attempt to avoid such variance is asking an user to choose between two behaviours that were observed by himself. Evaluating relatively observed behaviours turn questions more transparent and simpler for the user, decreasing the variance effect, but it might not be easier interpreting such evaluations. If divergences between agents and users perceptions occur, the agent may not be able to learn the users preference. Evaluations are generated regarding users perception, but all an agent can do is to relate such evaluation to his own perception. Another issue is that questions, which are exposed to the user through behaviours, are now constrained by the environment dynamics and a behaviour cannot be chosen arbitrarily, but the behaviour must be feasible and a policy must be executed in order to achieve a behaviour. Whereas the first issue influences the inference regarding users evaluation, the second problem influences how fast and accurate the learning process can be made. This thesis proposes the problem of Preference Elicitation under Evaluations over Observed Behaviours using the Markov Decision Process framework and theoretic properties in such framework are developed in order to turn such problem computationally feasible. The problem o different perceptions is analysed and constraint solutions are developed. The problem of demonstrating a behaviour is considered under the formulation of question based on stationary policies and non-stationary policies. Both type of questions was implemented and tested to solve the preference elicitation in a scenario with constraint conditions.

Page generated in 0.0702 seconds