Spelling suggestions: "subject:"exponential heighted geometric mean"" "subject:"exponential heighted geometric jean""
1 |
Developing a FMEA Methodology to Assess Non-Technical Risks in Power PlantsAL Mashaqbeh, S., Munive-Hernandez, J. Eduardo, Khan, M. Khurshid 14 April 2018 (has links)
Yes / Risk Management is one of the most relevant approaches and systematic application of strategies, procedures and practices management that have been introduced in literature to identifying and analysing risks which exist through the whole life of a product or a process. As a quality management tool, the novelty of this paper suggests a modified Failure Modes and Effect Analysis (FMEA) for understanding the non-technical risk comprehensively, and to attain a systemic methodology by decomposing the risk for nine risk categories including an appropriate 84 Risk Indicators (RI's) within all those categories through the Life Cycle (LC) stages of power plants. These risk categories have been identified as: economic risks, environmental and safety health risks, social risks, technological risks, customer/demand risks, supply chain risks, internal and operational business process risks, human resources risks and management risks. These indicators are collected from literatures. The enhanced FMEA has combined the exponential and the weighted geometric mean (WGM) to calculate the Exponential Weighted Geometric Mean-RPN (EWGM-RPN). The EWGM-RPN can be used to evaluate the risk level, after which the high-risk areas can be determined. Subsequently, effective actions either preventive or corrective can be taken in time to reduce the risk to an acceptable level. However, in this paper the FMEA will not adapt an action plan. Due to that, all RPN's will be considered depending on the point scale (1 to 5) afterward, the results will be combined and extended later with AHP. This developed methodology is able to boost effective decision- making about risks, improve the awareness towards the risk management at power plants, and assist the top management to have an acceptable and preferable understanding of the organisation than lower level managers do who are close to the day-to-day (tactical plan). Additionally, this will support the organisation to develop strategic plans which are for long term. And the essential part of applying this methodology is the economic benefit. Also, this paper includes developed sustainability perspective indicators with a new fourth pillar, which is the technological dimension. The results of the analysis show that the potential strategic makers should pay special attention to the environmental and internal and operational business process risks. The developed methodology will be applied and validated for different power plants in the Middle East. An expanded validation is required to completely prove drawbacks and benefits after completing the Analytical Hierarchy Process (AHP) model. / Hashemite University, Jordan
|
2 |
Developing a Risk Assessment Model for non-Technical Risk in Energy SectorAL Mashaqbeh, S., Munive-Hernandez, J. Eduardo, Khan, M. Khurshid 28 February 2018 (has links)
Yes / Risk Management is one of the most relevant approaches and systematic applications of strategies,
procedures and practices management that have been introduced in literatures for identifying and
analysing risks which exist through the whole life of a product ,a process or services. Therefore, the aim
of this paper is to propose a risk assessment model that will be implemented to the energy sector,
particularly to power plants. This model combines the Analytic Hierarchy Process (AHP) technique with
a new enhanced Balance Score Card (BSC). AHP is constructed to determine the weights and the
priorities for all perspectives and risk indicators that involved in the BSC. The novelty in this paper is not
only in using the BSC for risk assessment, but also, in developing a new BSC with six perspectives,
which are sustainability perspective; economic; learning and growth; internal and operational business
process; supply chain and customer/demand perspective. Another three contributions of this paper are
firstly, including the sustainability dimension in BSC, and covering nine risk categories, which comprise
84 risk indicators that have been distributed across the six risk BSC perspectives. Secondly, assessing the
non-technical risks in power plants and finally, this research will concentrate on the strategic level instead
of the operational level where the majority of researches focus on latter but the former is far less
researched. The created model will provide an effective measurement for the risks particularly, in the
power plants sector. The results of this study demonstrate that the supply chain risks perspective is the
keystone for the decision making process. Furthermore, these risk indicators with the new structure of
BSC with six perspectives, help in achieving the organisation mission and vision in addition to affording
a robust risk assessment model. The inputs of this model are composed from a previous stage using a
modified Failure Mode and Effect Analysis (FMEA) (which has been used the Exponential Weighted
Geometric Mean (EWGM)) to understand and analyse all risks, after which, the results of the developed
FMEA which are the Risk Priority Numbers (RPN’s), have been used to build the AHP-BSC risk model.
These risks are collected with difficulty from various literatures. This study will be validated in the next
stage in power plants in the Middle East. / Hashemite University, Jordan
|
Page generated in 0.1053 seconds