Spelling suggestions: "subject:"1expression recognition"" "subject:"dexpression recognition""
1 |
Recognition of facially expressed emotion : with particular reference to mentally abnormal offendersAshcroft, James Barrie January 1988 (has links)
No description available.
|
2 |
Facial expression recognition with temporal modeling of shapesJain, Suyog Dutt 20 September 2011 (has links)
Conditional Random Fields (CRFs) is a discriminative and supervised approach for simultaneous sequence segmentation and frame labeling. Latent-Dynamic Conditional Random Fields (LDCRFs) incorporates hidden state variables within CRFs which model sub-structure motion patterns and dynamics between labels. Motivated by the success of LDCRFs in gesture recognition, we propose a framework for automatic facial expression recognition from continuous video sequence by modeling temporal variations within shapes using LDCRFs. We show that the proposed approach outperforms CRFs for recognizing facial expressions. Using Principal Component Analysis (PCA) we study the separability of various expression classes in lower dimension projected spaces. By comparing the performance of CRFs and LDCRFs against that of Support Vector Machines (SVMs) and a template based approach, we demonstrate that temporal variations within shapes are crucial in classifying expressions especially for those with small facial motion like anger and sadness. We also show empirically that only using changes in facial appearance over time without using the shape variations fails to obtain high performance for facial expression recognition. This reflects the importance of geometric deformations on face for recognizing expressions. / text
|
3 |
Facial expressions of emotion : influences of configurationCook, Fay January 2007 (has links)
The dominant theory in facial expression research is the dual mode hypothesis. After reviewing the literature pertaining to the dual mode hypothesis within the recognition of facial identities and emotional expressions, seven experiments are reported testing the role of configural processing within the recognition of emotional expressions of faces. The main findings were that the dual mode hypothesis can be supported within the facial recognition of emotional expression. This and other more specific findings are then reviewed within the context of extant literature. Implications for future research and applications within applied psychology are then considered.
|
4 |
Grassmannian Learning for Facial Expression Recognition from VideoJanuary 2014 (has links)
abstract: In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the video sequence in a lower dimensional expression subspace and also as a linear dynamical system using Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann space, we use Grassmann manifold based learning techniques such as kernel Fisher Discriminant Analysis with Grassmann kernels for classification. We consider six expressions namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su) for classification. We perform experiments on extended Cohn-Kanade (CK+) facial expression database to evaluate the expression recognition performance. Our method demonstrates good expression recognition performance outperforming other state of the art FER algorithms. We achieve an average recognition accuracy of 97.41% using a method based on expression subspace, kernel-FDA and Support Vector Machines (SVM) classifier. By using a simpler classifier, 1-Nearest Neighbor (1-NN) along with kernel-FDA, we achieve a recognition accuracy of 97.09%. We find that to process a group of 19 frames in a video sequence, LBP feature extraction requires majority of computation time (97 %) which is about 1.662 seconds on the Intel Core i3, dual core platform. However when only 3 frames (onset, middle and peak) of a video sequence are used, the computational complexity is reduced by about 83.75 % to 260 milliseconds at the expense of drop in the recognition accuracy to 92.88 %. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
|
5 |
Automaticity and Hemispheric Specialization in Emotional Expression Recognition: Examined using a modified Stroop TaskBeall, Paula M. 08 1900 (has links)
The main focus of this investigation was to examine the automaticity of facial expression recognition through valence judgments in a modified photo-word Stroop paradigm. Positive and negative words were superimposed across male and female faces expressing positive (happy) and negative (angry, sad) emotions. Subjects categorized the valence of each stimulus. Gender biases in judgments of expressions (better recognition for male angry and female sad expressions) and the valence hypothesis of hemispheric advantages for emotions (left hemisphere: positive; right hemisphere: negative) were also examined. Four major findings emerged. First, the valence of expressions was processed automatically (robust interference effects). Second, male faces interfered with processing the valence of words. Third, no posers' gender biases were indicated. Finally, the emotionality of facial expressions and words was processed similarly by both hemispheres.
|
6 |
Psychopathic Personality Traits, Empathy, and Recognition of Facial Expressions of EmotionsSundell, Jessica January 2019 (has links)
Psychopathic personality traits have been found to be associated with a variety of emotional deficits, including poor facial expression recognition, and reduced capacity to experience empathy. However, research has yielded conflicting results. This study investigated the relationship between psychopathic personality traits, facial emotion recognition, as well as empathy, in a community sample (n = 127), identified as having either low or elevated levels of psychopathic traits. Facial expression recognition was measured using the Hexagon task, which contains morphed facial expressions with two levels of expressivity. Psychopathic traits were assessed using the Youth Psychopathic Traits Inventory, and empathy was measured with the Interpersonal Reactivity Index. Individuals with elevated psychopathic traits did not display lower accuracy in facial expression recognition compared to the low psychopathic traits group, rather the reverse was found. Weak to strong negative correlations were found between psychopathic traits and empathy. Zero to weak correlations was found between psychopathic traits and expression recognition, as well as between empathy and expression recognition. The results are compared with similar studies, and implications for the study of psychopathy and emotion recognition are discussed.
|
7 |
Towards Man-Machine Interfaces: Combining Top-down Constraints with Bottom-up Learning in Facial AnalysisKumar, Vinay P. 01 September 2002 (has links)
This thesis proposes a methodology for the design of man-machine interfaces by combining top-down and bottom-up processes in vision. From a computational perspective, we propose that the scientific-cognitive question of combining top-down and bottom-up knowledge is similar to the engineering question of labeling a training set in a supervised learning problem. We investigate these questions in the realm of facial analysis. We propose the use of a linear morphable model (LMM) for representing top-down structure and use it to model various facial variations such as mouth shapes and expression, the pose of faces and visual speech (visemes). We apply a supervised learning method based on support vector machine (SVM) regression for estimating the parameters of LMMs directly from pixel-based representations of faces. We combine these methods for designing new, more self-contained systems for recognizing facial expressions, estimating facial pose and for recognizing visemes.
|
8 |
Studies of emotion recognition from multiple communication channelsDurrani, Sophia J. January 2005 (has links)
Crucial to human interaction and development, emotions have long fascinated psychologists. Current thinking suggests that specific emotions, regardless of the channel in which they are communicated, are processed by separable neural mechanisms. Yet much research has focused only on the interpretation of facial expressions of emotion. The present research addressed this oversight by exploring recognition of emotion from facial, vocal, and gestural tasks. Happiness and disgust were best conveyed by the face, yet other emotions were equally well communicated by voices and gestures. A novel method for exploring emotion perception, by contrasting errors, is proposed. Studies often fail to consider whether the status of the perceiver affects emotion recognition abilities. Experiments presented here revealed an impact of mood, sex, and age of participants. Dysphoric mood was associated with difficulty in interpreting disgust from vocal and gestural channels. To some extent, this supports the concept that neural regions are specialised for the perception of disgust. Older participants showed decreased emotion recognition accuracy but no specific pattern of recognition difficulty. Sex of participant and of actor affected emotion recognition from voices. In order to examine neural mechanisms underlying emotion recognition, an exploration was undertaken using emotion tasks with Parkinson's patients. Patients showed no clear pattern of recognition impairment across channels of communication. In this study, the exclusion of surprise as a stimulus and response option in a facial emotion recognition task yielded results contrary to those achieved without this modification. Implications for this are discussed. Finally, this thesis gives rise to three caveats for neuropsychological research. First, the impact of the observers' status, in terms of mood, age, and sex, should not be neglected. Second, exploring multiple channels of communication is important for understanding emotion perception. Third, task design should be appraised before conclusions regarding impairments in emotion perception are presumed.
|
9 |
A Real Time Facial Expression Recognition System Using Deep LearningMiao, Yu 27 November 2018 (has links)
This thesis presents an image-based real-time facial expression recognition system that is capable of recognizing basic facial expressions of several subjects simultaneously from a webcam. Our proposed methodology combines a supervised transfer learning strategy and a joint supervision method with a new supervision signal that is crucial for facial tasks. A convolutional neural network (CNN) model, MobileNet, that contains both accuracy and speed is deployed in both offline and real-time frameworks to enable fast and accurate real-time output.
Evaluations for both offline and real-time experiments are provided in our work. The offline evaluation is carried out by first evaluating two publicly available datasets, JAFFE and CK+, and then presenting the results of the cross-dataset evaluation between these two datasets to verify the generalization ability of the proposed method. A comprehensive evaluation configuration for the CK+ dataset is given in this work, providing a baseline for a fair comparison. It reaches an accuracy of 95.24% on JAFFE dataset, and an accuracy of 96.92% on 6-class CK+ dataset which only contains the last frames of image sequences. The resulting average run-time cost for recognition in the real-time implementation is reported, which is approximately 3.57 ms/frame on an NVIDIA Quadro K4200 GPU. The results demonstrate that our proposed CNN-based framework for facial expression recognition, which does not require a massive preprocessing module, can not only achieve state-of-art accuracy on these two datasets but also perform the classification task much faster than a conventional machine learning methodology as a result of the lightweight structure of MobileNet.
|
10 |
Techniques for Facial Expression Recognition Using the KinectAly, Sherin Fathy Mohammed Gaber 02 November 2016 (has links)
Facial expressions convey non-verbal cues. Humans use facial expressions to show emotions, which play an important role in interpersonal relations and can be of use in many applications involving psychology, human-computer interaction, health care, e-commerce, and many others. Although humans recognize facial expressions in a scene with little or no effort, reliable expression recognition by machine is still a challenging problem.
Automatic facial expression recognition (FER) has several related problems: face detection, face representation, extraction of the facial expression information, and classification of expressions, particularly under conditions of input data variability such as illumination and pose variation. A system that performs these operations accurately and in realtime would be a major step forward in achieving a human-like interaction between the man and machine.
This document introduces novel approaches for the automatic recognition of the basic facial expressions, namely, happiness, surprise, sadness, fear, disgust, anger, and neutral using relatively low-resolution noisy sensor such as the Microsoft Kinect. Such sensors are capable of fast data collection, but the low-resolution noisy data present unique challenges when identifying subtle changes in appearance. This dissertation will present the work that has been done to address these challenges and the corresponding results. The lack of Kinect-based FER datasets motivated this work to build two Kinect-based RGBD+time FER datasets that include facial expressions of adults and children. To the best of our knowledge, they are the first FER-oriented datasets that include children. Availability of children data is important for research focused on children (e.g., psychology studies on facial expressions of children with autism), and also allows researchers to do deeper studies on automatic FER by analyzing possible differences between data coming from adults and children.
The key contributions of this dissertation are both empirical and theoretical. The empirical contributions include the design and successful test of three FER systems that outperform existing FER systems either when tested on public datasets or in realtime. One proposed approach automatically tunes itself to the given 3D data by identifying the best distance metric that maximizes the system accuracy. Compared to traditional approaches where a fixed distance metric is employed for all classes, the presented adaptive approach had better recognition accuracy especially in non-frontal poses. Another proposed system combines high dimensional feature vectors extracted from 2D and 3D modalities via a novel fusion technique. This system achieved 80% accuracy which outperforms the state of the art on the public VT-KFER dataset by more than 13%. The third proposed system has been designed and successfully tested to recognize the six basic expressions plus neutral in realtime using only 3D data captured by the Kinect. When tested on a public FER dataset, it achieved 67% (7% higher than other 3D-based FER systems) in multi-class mode and 89% (i.e., 9% higher than the state of the art) in binary mode. When the system was tested in realtime on 20 children, it achieved over 73% on a reduced set of expressions. To the best of our knowledge, this is the first known system that has been tested on relatively large dataset of children in realtime. The theoretical contributions include 1) the development of a novel feature selection approach that ranks the features based on their class separability, and 2) the development of the Dual Kernel Discriminant Analysis (DKDA) feature fusion algorithm. This later approach addresses the problem of fusing high dimensional noisy data that are highly nonlinear distributed. / PHD / One of the most expressive way humans display emotions is through facial expressions. The recognition of facial expressions is considered one of the primary tools used to understand the feelings and intentions of others. Humans detect and interpret faces and facial expressions in a scene with little or no effort, in a way that it has been argued that it may be universal. However, developing an automated system that accurately accomplishes facial expression recognition is more challenging and is still an open problem. It is not difficult to understand why facial expression recognition is a challenging problem. Human faces are capable of expressing a wide array of emotions. Recognition of even a small set of expressions, say happiness, surprise, anger, disgust, fear, and sadness, is a difficult problem due to the wide variations of the same expression among different people. In working toward automatic Facial Expression Recognition (FER), psychologists and engineers alike have tried to analyze and characterize facial expressions in an attempt to understand and categorize these expressions. Several researchers have considered the development of systems that can perform FER automatically whether using 2D images or videos. However, these systems inherently impose constraints on illumination, image resolution, and head orientation. Some of these constraints can be relaxed through the use of three-dimensional (3D) sensing systems. Among existing 3D sensing systems, the Microsoft Kinect system is notable because it is low in cost. It is also a relatively fast sensor, and it has been proven to be effective in real-time applications. However, Kinect imposes significant limitations to build effective FER systems. This is mainly because of its relatively low resolution, compared to other 3D sensing techniques and the noisy data it produces. Therefore, very few researchers have considered the Kinect for the purpose of FER. This dissertation considers new, comprehensive systems for automatic facial expression recognition that can accommodate the low-resolution data from the Kinect sensor. Moreover, through collaboration with some Psychology researchers, we built the first facial expression recognition dataset that include spontaneous and acted facial expressions recorded for 32 subjects including children. With the availability of children data, deeper studies focused focused on children can be conducted (e.g., psychology studies on facial expressions of children with autism).
|
Page generated in 0.1147 seconds