Spelling suggestions: "subject:"extensions abélienne"" "subject:"extensions brésiliennes""
1 |
Construction of basis of the group of cyclotomic units of some real abelian extensionSalami, Azar 20 April 2018 (has links)
Dans cette thèse, nous construisons une base du groupe Ck des unités cycolotomiques (au sens de Sinnott) d’une certaine extension abélienne finie k de Q ramifiée exactement sur trois nombres premiers distincts. La première étape consiste en la construction d’une base du goupe Dk des nombres circulaires de k. Par la suite, il sera plus simple d’obtenir une base de Ck. / In this thesis, we construct an explicit basis of the group Ck of cyclotomic units of certain finite abelian extension k of Q ramified at exactly three distinct primes. The first step consists in constructing a basis of the group Dk of circular numbers of k. From there, it is not too difficult to obtain a basis of Ck. The method is combinatorial in nature. We may visualize our construction using a three dimensional cuboid formed of j Gal(k=Q)j small cubes, each of these small cubes containing a Galois conjugate of a primitive circular unit of k. The classical norm relations give rise to some identifications on the cuboid. Using these identifications and an Ennola-type relation (a highly non-trivial relation), we manage to construct an explicit basis of Ck.
|
2 |
Autour du problème de Lehmer relatif dans un toreDelsinne, Emmanuel 14 December 2007 (has links) (PDF)
Le problème de Lehmer consiste à minorer la hauteur de Weil d'un nombre algébrique en fonction de son degré sur Q. Si la question originelle de Lehmer reste aujourd'hui sans réponse, la conjecture optimale correspondante a été démontrée à un epsilon près. Par ailleurs, ce problème admet plusieurs généralisations. D'une part, on peut formuler le même type de conjecture en remplaçant le corps des rationnels par une extension abélienne d'un corps de nombres. D'autre part, on peut généraliser ces énoncés en dimension supérieure. Il s'agit alors de minorer la hauteur normalisée d'un point ou d'une sous-variété d'un tore ; dans ce cas, on substitue au degré un invariant plus fin : l'indice d'obstruction. Il est ensuite naturel de chercher à combiner ces deux généralisations : c'est le problème de Lehmer relatif dans un tore.<br /><br />Dans cette thèse, nous considérons tout d'abord le problème de Lehmer relatif unidimensionnel. Nous donnons une minoration pour la hauteur d'un nombre algébrique en fonction de son degré sur une extension abélienne d'un corps de nombres. Il s'agit d'une amélioration d'un théorème d'Amoroso et Zannier, obtenue à l'aide d'une démonstration techniquement plus simple. De plus, nous explicitons la dépendance de la borne inférieure en le corps de base. Puis nous abordons le problème de Lehmer relatif en dimension supérieure et minorons la hauteur d'une hypersurface en fonction de son indice d'obstruction sur une extension abélienne de Q. Enfin, nous obtenons un résultat analogue pour un point, sous réserve que celui-ci satisfasse une hypothèse technique. Nous montrons ainsi les conjectures les plus fines à un epsilon près.
|
Page generated in 0.0879 seconds