• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • 6
  • 3
  • 3
  • Tagged with
  • 52
  • 14
  • 12
  • 10
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modulators of Cellular and Biochemical PRC2 Activity

Paulk, Joshiawa Lanair James 21 October 2014 (has links)
EZH2 is a SET domain-containing methyltransferase and the catalytic component of the multimeric Polycomb- group (PcG) protein complex, PRC2. When in complex with other PRC2 members (EED, SUZ12, AEBP2, and RBBP4), EZH2 catalyzes methylation of H3K27, a histone modification associated with transcriptional repression and developmental regulation. As several PRC2 components are upregulated or mutated in a variety of human cancers, efforts to discover small-molecule modulators of PRC2 and understand its regulation may yield therapeutic insights. Identification of small-molecule probes with distinct chemotypes, MOAs, and selectivity profiles are not only of great value, but necessary in establishing comprehensive probe sets capable of illuminating the various roles of EZH2 in oncogenesis. Here we describe efforts to identify and characterize small-molecule modulators of PRC2 and further understand its regulation. Chapter II outlines the expression and purification of 5-component PRC2 (EZH2-EED-SUZ12-AEBP2-RBBP4) and the establishment of biochemical and cellular HTS assays. These assays were used to screen a diverse set of small molecules (>120,000), identifying biochemical PRC2 inhibitors and activators (described in Chapter III). One biochemical PRC2 inhibitor, BRD1835, appeared to inhibit PRC2 activity through a novel artifactual mechanism involving interaction with peptide substrate, leading to apparent peptide-competitive behavior and putative cellular activity (described in Chapter IV). The characterization of novel biochemical PRC2 activators, BRD3934 and BRD8284, is discussed in Chapter V. Chapter VI describes the use of an HCS assay to identify known bioactive compounds that alter intracellular levels of H3K27me3 through modulating H3K27me3-connected regulatory nodes or by targeting PRC2 directly. These efforts led to the discovery that an antifungal agent, miconazole, is capable of activating PRC2 activity in vitro, while a mucolytic agent, bromhexine, selectively ablates cellular H3K27me3 levels through targeting an activity distinct from PRC2. Finally, Chapter VII discusses novel PRC2-connected crosstalk mechanisms identified through screening libraries of uniquely modified histone peptides for their ability to bind or support methylation by PRC2. These studies enhance our understanding of PRC2 regulation by revealing the effects of H3R26 and H3K23me1 modifications on enzymatic activity, implicating their respective methyltransferases in PRC2 regulation.
32

Rôle du cholestérol et des récepteurs nucléaires LXRs dans le cancer de la prostate

Pommier, Aurélien 30 November 2010 (has links) (PDF)
Au cours de ces dernières décennies, l'augmentation de la consommation de glucides, d'acides gras et de cholestérol liée aux changements des habitudes alimentaires dans la plupart des pays industrialisés est à l'origine de nombreuses pathologies telles que l'obésité, les troubles cardiovasculaires, le développement du diabète de type II et la survenue de cancers. Plusieurs arguments bibliographiques suggèrent notamment que le cholestérol puisse être un élément à risque dans la survenue du cancer de la prostate. D'une part, l'hypercholestérolémie est associée à une augmentation des cas de cancer de la prostate et, d'autre part, les cellules cancéreuses présentent des dérèglements du métabolisme des lipides associés à l'accumulation de cholestérol dans les tumeurs solides. Les objectifs de ces travaux ont été d'analyser le rôle du cholestérol dans le développement du cancer de la prostate et d'étudier le rôle des récepteurs nucléaires LXRs (liver X receptors), régulateurs fondamentaux de l'homéostasie du cholestérol, dans les mécanismes associés à l'initiation et à la progression tumorale. Nos résultats montrent qu'une accumulation de cholestérol, induite par un régime chez les souris déficientes en LXRs, peut initier les premières étapes du développement tumoral par des mécanismes épigénétiques mettant en jeu l'action répressive de l'histone méthyltransférase EZH2 sur des gènes suppresseurs de tumeur. En parallèle, l'activation pharmacologique des LXRs dans des cellules cancéreuses humaines réduit la croissance tumorale en augmentant la mort des cellules par des mécanismes faisant intervenir les rafts lipidiques. Au total, nos travaux révèlent l'existence d'une relation entre la consommation excessive de cholestérol et la modification d'empreintes épigénétiques, mécanisme de plus en plus associé aux processus carcinogéniques. Nos données indiquent également que les LXRs, en s'opposant à l'accumulation de cholestérol intracellulaire, ralentissent l'initiation et la progression du cancer de la prostate. Ainsi, toute stratégie thérapeutique visant à diminuer le cholestérol intra-tumoral, telle que l'activation pharmacologique des LXRs, peut être considérée comme une piste thérapeutique dans le cadre du cancer de la prostate.
33

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine 25 February 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
34

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine January 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
35

EZH2-GATA6 axis in Pancreatic ductal adenocarcinoma

Patil, Shilpa 22 June 2020 (has links)
No description available.
36

EZH2 inhibitors restore epigenetically silenced CD58 expression in B-cell lymphomas / EZH2阻害薬はB細胞リンパ腫においてエピゲノム修飾により抑制されたCD58発現を回復させる

Otsuka, Yasuyuki 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22727号 / 医博第4645号 / 新制||医||1045(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 濵﨑 洋子, 教授 羽賀 博典, 教授 伊藤 貴浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
37

Feminization of male mouse liver by continuous growth hormone infusion or loss of EZH1/2: activation of sex-biased transcriptional networks and dynamic changes in chromatin states

Lau Corona, Dana 12 June 2018 (has links)
The sex-dependent pituitary growth hormone (GH) secretory profiles, pulsatile in males and persistent in females, regulate sex-biased expression of hundreds of genes in mammalian liver, contributing to sex differences in hepatic metabolism and disease. The sex-biased GH actions in the liver are mediated by STAT5b and enhanced by a network of transcription factors including the male-biased BCL6 and the female-specific CUX2, acting in the context of sex-biased chromatin states. First, the transcriptional and epigenomic changes induced by continuous-GH infusion (cGH) in male mice, which rapidly feminizes the temporal profile of liver STAT5 activity, were examined. RNA-seq analysis determined that cGH repressed the majority of male-biased genes and induced most female-biased genes within 4-days; however, several highly female-specific genes showed partial feminization. Female-biased genes already in an active chromatin state in male liver were induced early; genes in an inactive chromatin state often responded late. Early cGH-responsive genes included Cux2 and Bcl6 and their targets. DNase-seq and ChIP-seq were used to identify changes in sex-specific chromatin accessibility and histone modifications accompanying these cGH-induced gene expression changes. H3-K27me3 is a key sex-biased repressive mark found preferentially at highly female-biased genes in male mouse liver. Consistently, induction of female-biased genes by cGH was associated with loss of H3-K27me3 at their gene bodies. H3K27 methylation is catalyzed by Polycomb Repressive Complex-2 (PRC2) through its homologous catalytic subunits EZH1 and EZH2. An Ezh1-knockout mouse model with a hepatocyte-specific knockout of Ezh2 (DKO) was used to further investigate the role of H3-K27me3 in repressing sex-biased genes in mouse liver. Loss of Ezh1/Ezh2 led to a significant decrease in sex-specific gene expression, with many female-biased genes induced and male-biased genes repressed. These gene responses were more extensive in male than female liver, as was the loss of H3K27me3 sites and the reciprocal increases in active histone marks. There was substantial up-regulation of liver cancer and liver fibrosis-related genes in male and female DKO-mouse liver, with a subset of genes preferentially up-regulated in females. Thus, GH regulated sex-biased liver physiology is dictated by transcription factors arranged in a hierarchical network and by dynamic sex-biased epigenetic states. / 2020-06-12T00:00:00Z
38

The EZH2 inhibitor tazemetostat upregulates the expression of CCL17/TARC in B-cell lymphoma and enhances T-cell recruitment / EZH2阻害剤tazemetostatは、B細胞リンパ腫におけるCCL17/TARCの発現を上昇させ、T細胞の遊走を促進する

Yuan, Hepei 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24496号 / 医博第4938号 / 新制||医||1064(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 滝田 順子, 教授 上野 英樹, 教授 河本 宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
39

Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

Erdmann, Kati, Kaulke, Knut, Thomae, Cathleen, Hübner, Doreen, Sergon, Mildred, Fröhner, Michael, Wirth, Manfred P, Füssel, Susanne 11 July 2014 (has links) (PDF)
Background: Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). Methods: In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. Results: The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. Conclusions: The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction.
40

Regulação da expressão de SH3BGRL2, D53, PRAME, DAP12 e calcineurina A beta por BCR-ABL e consequências biológicas dessa regulação na LMC. / BCR-ABL-mediated regulation of SH3BGRL2, D53, PRAME, DAP12 e Calcineurin A beta and biological consequences of this regulation on CML.

Carvalho, Daniel Diniz de 23 November 2009 (has links)
Sabe-se que TRAIL é capaz de matar células tumorais de forma seletiva e que TRAIL tem sua expressão reduzida em diversos tumores, porém pouco se sabe sobre os mecanismos responsáveis pela sua inibição. Tendo em vista que a expressão de TRAIL pode ser regulada pelo Ácido Retinóico; que PRAME é capaz de inibir a via do ácido retinóico através da proteína EZH2 e que nós observamos anteriormente que a expressão de TRAIL esta diminuída em pacientes com LMC, nós decidimos investigar a associação entre PRAME, EZH2 e TRAIL na LMC. Nós demonstramos que PRAME, mas não EZH2, tem sua expressão aumentada em células BCR-ABL+ e sua expressão está associada com a progressão da LMC. Alem disto, existe uma correlação positiva entre PRAME e BCR-ABL e negativa entre PRAME e TRAIL nestes pacientes. A inibição da expressão de PRAME ou EZH2 por RNAi induziu um aumento da expressão de TRAIL. Estes dados revelam um novo mecanismo de regulação responsável por diminuir a expressão de TRAIL, e geram novos possíveis alvos para a terapia da LMC e, possivelmente, também para outros tumores. / TRAIL was shown to selectively kill tumor cells. Not surprisingly, TRAIL is down-regulated in a variety of tumor cells, but the mechanism responsible for TRAIL inhibition remains elusive. Because TRAIL can be regulate by retinoic acid; PRAME was shown to inhibit transcription of retinoic acid receptor target genes through the polycomb protein EZH2; and we have found that TRAIL is inversely correlated with BCR-ABL in CML patients, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is up-regulated in BCR-ABL cells and is associated with the progression of disease in CML patients. In addition, PRAME expression is positively correlated with BCR-ABL and negatively with TRAIL in these patients. Importantly, knocking down of PRAME or EZH2 by RNA interference restores TRAIL expression. Our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML.

Page generated in 0.0236 seconds