• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifizierung neuer E2F-Zielgene in der Wachstumskontrolle und Tumorprogression

Schreiber, Caroline 01 December 2008 (has links)
Der pRB/E2F-Signalweg ist ein wichtiger Schlüsselpunkt für die Wachstumskontrolle in Säugerzellen und in vielen Tumoren sind Komponenten dieses Signalweges dereguliert. Durch die Nullmutation von E2F3 in Mausembryonalen Fibroblasten (MEFs) und Mäusen konnte gezeigt werden, dass E2F3 essentiell für das zelluläre Wachstum ist und in der Maus organspezifisch sowohl als Tumorsuppressor als auch Onkogen agieren kann. Jedoch sind dafür die zugrunde liegenden Mechanismen noch nicht genau geklärt. Möglicherweise tragen verschiedene Signalwege, die durch den Verlust von E2F3 dereguliert werden, zu den Defekten bei. In dieser Arbeit wurde TGFbeta1, ein wichtiger Wachstumsregulator, in den E2f3-/- MEFs untersucht und es konnte zum ersten Mal eine direkte Verbindung zwischen der E2F3-Expression und der TGFbeta1-Signalwirkung gezeigt werden. Durch den Verlust von E2F3 werden Tgfb1 und die TGFbeta1-regulierten Gene PAI-1, p21, Vimentin und Fibronectin in MEFs dereprimiert. Darüber hinaus werden MEFs und humane Lungenkarzinomzellen durch den Verlust von E2F3 gegenüber TGFbeta1 sensibilisiert und reagieren verstärkt auf TGFbeta1-induzierte Genexpression und Prozesse wie Wachstumsarrest und EMT. Somit wird E2F3 nicht nur durch TGFbeta1 reguliert, sondern kann auch auf TGFbeta1 und die TGFbeta1-Signalwirkung Einfluss nehmen, was für die Tumorprogression weit reichende Auswirkung haben kann. Um die tumorsuppressiven Eigenschaften von E2F3 besser zu verstehen, wurden im zweiten Teil dieser Arbeit murine medulläre Schilddrüsentumore mit unterschiedlichem metastatischen Potential miteinander verglichen und es konnten neue E2F-Zielgene identifiziert werden. Die Untersuchung von humanen Struma nodosa-Biopsien und metastatischen medullären Schilddrüsentumoren ergab, dass die in den Mäusen gefundenen Gene künftig auch als humane Metastasemarker Verwendung finden können. / The pRB/E2F-pathway plays a key role in growth control and it is deregulated in many tumors. Previously, by analysing E2f3 deficient mouse embryonic fibroblasts (MEFs) and mice it has been shown that E2F3, a key downstream target of pRB, is essential for cellular proliferation and can act either as an oncogene or tumorsuppressor in mice depending on the organ. However, the underlying mechanism is still unclear. We suggest that specific pathways which are deregulated due to the deletion of E2F3 contribute to these defects. TGFbeta1, which is one of the most potent growth regulators for mammalian cells was analysed in E2f3-/- MEFs. In this study, we could establish a direct link between E2F3 expression and TGFbeta1 signalling. Loss of E2F3 in MEFs leads to de-repression of Tgfb1 and TGFbeta1-regulated genes like PAI-1, p21, vimentin and fibronectin. Moreover, loss of E2F3 in MEFs or in human lung carcinoma cells results in an increased sensitivity to TGFbeta1-induced gene expression and processes like growth arrest and epithelial mesenchymal transition. These data suggest that not only TGFbeta1 can act on E2F3 but also E2F3 can affect TGFbeta1 and the outcome of TGFbeta1-induced signalling. In order to understand the tumor suppressive properties of E2F3, we compared gene expression profiles of murine medullary thyroid carcinomas (MTCs) of different metastatic potential and could identify novel E2F-target genes. Analysis of human struma nodosa biopsies and human metastatic medullary thyroid tumors showed that the genes identified in the mouse model can also be used as metastasis markers in human tumors.
2

Identifizierung und Charakterisierung neuer Interaktionspartner von E2F3

Eyß, Björn von 09 July 2010 (has links)
Der pRB/E2F-Signalweg ist ein zentraler Regulator der Proliferationskontrolle in Säugerzellen, der in fast allen auftretenden Tumoren dereguliert ist. Durch unterschiedliche Mutationen in Komponenten dieses Signalwegs kommt es letzten Endes zu einer erhöhten Aktivität der E2F-Transkriptionsfaktoren und somit zu einer verstärkten Transkription von E2F-Zielgenen in diesen Tumoren. Um die molekularen Mechanismen der Rolle von E2F3 in der Zellzykluskontrolle und der Tumorigenese besser zu verstehen, wurden in dieser Arbeit per GST-Pulldown mit anschließender Massenspektrometrie neue potenzielle Interaktions-partner von E2F3 identifiziert. Ein identifizierter Interaktionspartner war die SNF2-ähnliche Helikase HELLS. HELLS interagiert in vitro und in vivo spezifisch mit der Marked Box-Domäne von E2F3, aber nicht mit anderen untersuchten E2F-Transkriptionsfaktoren, wie durch GST-Interaktionsstudien und Ko-Immunpräzipi-tationsexperimente demonstriert werden konnte. Durch Chromatin-Immunpräzipitation konnte zusätzlich gezeigt werden, dass E2F3 für die Rekrutierung von HELLS an E2F-regulierte Promotoren wie z. B. CDC6 oder p107 verantwortlich ist. Die shRNA-vermittelte Depletion von HELLS führte zu einer stark verminderten Induktion von allen untersuchten E2F-Zielgenen nach Serumstimulation und einem verspäteten Eintritt in die S-Phase der HELLS-depletierten Zellen, was zeigt, dass HELLS essenziell für die Induktion von E2F-Zielgenen ist. Bei der immunhistochemischen Untersuchung der E2F3- und HELLS-Expression in humanen Prostatakarzinomen zeigte sich, dass sowohl E2F3 als auch HELLS in späten aggressiven Stadien dieser Tumore sehr stark exprimiert sind, jedoch nur sehr schwach in den weniger aggressiven Tumoren. Diese Versuche zeigen, dass es sich bei HELLS um einen neuen Bestandteil des pRB/E2F-Signalwegs handelt, der eventuell in der Entstehung gewisser Tumorarten eine Rolle spielt und somit ein neues potenzielles Ziel für neuartige Krebstherapien darstellt. / The pRB/E2F pathway is a key regulator of proliferation in mammalian cells and is commonly mutated in human tumors. These mutations in the components of the pRB/E2F pathway lead to deregulated activity of the E2F transcription factors resulting in increased expression of E2F target genes. To further understand the molecular mechanisms of E2F3 in cell cycle control and its role in tumorigenesis new interaction partners for E2F3 were identified in the course of this thesis with the help of a GST-Pulldown approach coupled to mass spectrometric analysis. One of the identified interaction partners was the SNF2-like helicase HELLS. With the help of GST-interaction studies and Co-Immunoprecipitation assays it could be demonstrated that HELLS interacts specifically with E2F3 via its Marked Box domain but does not bind to the other investigated E2F transcription factors. HELLS could be detected at E2F target genes like p107 and CDC6 in vivo with the help of Chromatin-Immunoprecipitation assays. Furthermore, the forced recruitment of E2F3 to E2F target genes led to an enhanced binding of HELLS to these promotors suggesting that HELLS is recruited to E2F target genes via protein-protein interaction with E2F3. The shRNA-mediated depletion of HELLS led to a strongly reduced induction of E2F target genes and a delay in S-phase entry, showing that HELLS is essential for the induction of E2F target genes. During the immunohistochemical analysis of human prostate cancer specimens it became evident that both E2F3 and HELLS are strongly expressed in the more aggressive late stages but only weakly expressed in the early stages of this tumor type. These findings demonstrate that HELLS is a new component of the E2F/pRB pathway which might play a role in the development of certain tumors and might represent a new target for novel cancer therapies.
3

Molecular Mechanism of Aurora-A Kinase in Human Oncogenesis

He, Lili 07 July 2008 (has links)
Aurora-A is a mitotic kinase, which regulates cell cycle progression through modulating centrosome function. Aurora-A expression is frequently altered in human malignancies. The discrepancy between overexpression and amplification suggests that elevated Aurora-A level is likely to be regulated also by transcriptional and/or translational modifications. In this study, we have demonstrated: 1) transcriptional regulation of Aurora-A by E2F3; 2) feedback regulation between tumor suppressor CHFR and Aurora-A; 3) CNTD2 as a novel Aurora-A partner and oncogene to activate Aurora-A and induce transformation. Aurora-A expression and activity are cell cycle regulated. The mechanism of Aurora-A upregulation at onset of mitosis is largely unknown. We demonstrated, for the first time, that transcription factor E2F3 directly binds to Aurora-A promoter and tightly regulates Aurora-A expression during G2/M phase. Moreover, expression of E2F3 considerably correlates with Aurora-A level in human ovarian cancer, indicates that E2F3 is a causal factor for Aurora-A overexpression. Thus, E2F3-Aurora-A axis could be an important target for cancer intervention. The frequent inactivation of prophase checkpoint CHFR caused by DNA methylation or mutation has been reported in human cancers. We showed that CHFR is hypermethylated in ovarian carcinoma. Aurora-A phosphorylates CHFR on Ser-218 and Ser-337 in vivo and in vitro, which inhibits CHFR ubiquitin ligase activity. The feedback regulation loop between Aurora-A and CHFR could play a critical role in regulation of cell cycle progression, imbalance of which may contribute to human oncogenesis. Using yeast 2-hybrid screening, we identified a splicing form of CNTD2 as Aurora-A interacting protein. CNTD2 locates to chromosome 19q13.2 AKT2 amplicon. CNTD2 is amplified and overexpressed in human ovarian, pancreatic and lung cancer cell lines and primary tumors. CNTD2 colocalizes and interacts with Aurora-A in the centrosome. CNTD2 expression induces Aurora-A and cdc2 kinase activity, G2/M progression, and malignant transformation. These data indicate that CNTD2 is an oncogene and could play a pivotal role in Aurora-A activation during the cell cycle and that disruption of CNTD2-Aurora-A axis may represent a potential means to antitumor drug discovery.
4

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine 25 February 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
5

Molecular mechanism of Aurora-A kinase in human oncogenesis /

He, Lili. January 2008 (has links)
Dissertation (Ph.D.)--University of South Florida, 2008. / Includes vita. Includes bibliographical references.
6

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine 25 February 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
7

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine January 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.

Page generated in 0.0287 seconds