• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the roles of arabidopsis polycomb-group genes in regulating flowering time and during plant development by (I) challenging silencing and (II) developing approaches to dissect Pc-G action

Creasey, Kate M. January 2009 (has links)
Polycomb-group (Pc-G) proteins regulate homeotic gene silencing associated with the repressive covalent histone modification, trimethylation of histone H3 lysine 27 (H3K27me3). Pc-G mediated silencing is believed to remodel chromatin, rendering target genes inaccessible to transcription factors. Pc-G mediated silencing might result in irreversible changes in chromatin structure, however, there has been little analysis addressing whether Pc-G mediated silencing is reversible. In this work we focused on CURLY LEAF (CLF), the first Pc-G homologue discovered in Arabidopsis. CLF mediated repression of the floral homeotic gene AGAMOUS (AG) was challenged during early and late leaf development. AG was activated by the late leaf promoter, revealing that Pc-G mediated silencing can be overcome in old leaves in the presence of CLF. AG was also activated in young leaf primordia, yet did not persist in older leaves, revealing that transient activation of a Pc-G target is not epigenetically stable. To address the mechanism of Pc-G action within an endogenous environment, the histone dynamics at the APETALA1 (AP1) locus were characterized by Chromatin Immunoprecipitation. Unexpectedly, we found that the activation of AP1 in leaves did not require the removal of H3K27me3, questioning whether H3K27me3 is sufficient to silence. The roles of CLF in leaf and flower development are masked due to partial redundancy with SWINGER (SWN). clf- swn- mutants form a callus-like mass on sterile-tissue culture with no distinguishable plant organs. The role of CLF in regulating flowering time in natural populations of A. thaliana was investigated by complementing clf- mutants with CLF alleles from two accessions. We found that natural variation in CLF did not affect flowering time. To dissect the roles of CLF and SWN in late leaf and flower development, two approaches were developed for targeted expression. Firstly, CLF was introduced into the LhG4/ pOp transactivation system to provide CLF during early plant development. For mosaic analysis, CLF was introduced into the CRE lox recombination system in order to create clf- sectors surrounded by CLF+ SWN+ and CLF+ swn- cells.
2

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine 25 February 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
3

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine 25 February 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
4

Regulation of Neural Precursor Self-renewal via E2F3-dependent Transcriptional Control of EZH2

Pakenham, Catherine January 2013 (has links)
Our lab has recently found that E2F3, an essential cell cycle regulator, regulates the self-renewal capacity of neural precursor cells (NPCs) in the developing mouse brain. Chromatin immunoprecipitation (ChIP) and immunoblotting techniques revealed several E2F3 target genes, including the polycomb group (PcG) protein, EZH2. Further ChIP and immunoblotting techniques identified the neural stem cell self-renewal regulators p16INK4a and Sox2 as shared gene targets of E2F3 and PcG proteins, indicating that E2F3 and PcG proteins may co-regulate these target genes. E2f3-/- NPCs demonstrated dysregulated expression of EZH2, p16INK4a, and SOX2 and decreased enrichment of PcG proteins at target genes. Restoring EZH2 expression to E2f3+/+ levels restores p16INK4a and SOX2 expression levels to near E2f3+/+ levels, and also partially rescues NPC self-renewal capacity toward E2f3+/+ levels. Taken together, these results suggest that E2F3 controls NPC self-renewal by modulating expression of p16INK4a and SOX2 via regulation of PcG expression, and potentially PcG recruitment.
5

Investigação molecular e funcional de proteínas do Grupo Polycomb e seu envolvimento com a neurogênese olfatória / Molecular and functional investigation of Polycomb Group proteins and their involvement in olfactory neurogenesis

Souza, Mateus Augusto de Andrade, 1989- 03 December 2015 (has links)
Orientador: Fabio Papes / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-27T05:41:39Z (GMT). No. of bitstreams: 1 Souza_MateusAugustodeAndrade_M.pdf: 6121419 bytes, checksum: a603ea19d560e8cfebddccca9b7d824a (MD5) Previous issue date: 2015 / Resumo: Em mamíferos, os neurônios sensoriais do Sistema Olfatório (OSNs) se encontram no interior da cavidade nasal, mas estão diretamente expostos ao ambiente externo. Por um lado, tal localização permite a esses neurônios o acesso imediato aos estímulos químicos ambientais, tomando vantagem do fluxo respiratório. Por outro lado, esses neurônios estão constantemente sujeitos a injúrias por agentes nocivos, como toxinas e patógenos, capazes de destruir essas células sensoriais. Sua perda constante, contudo, é contrabalanceada pela geração de novos OSNs durante toda a vida do indivíduo, fato que torna o Sistema Olfatório um dos poucos locais do organismo com neurogênese contínua na idade adulta. A regeneração dos OSNs tem atraído a atenção da comunidade científica tanto pelo seu potencial uso como modelo de estudo do Sistema Nervoso quanto pela sua potencial aplicação para o tratamento de doenças neurodegenerativas. Nesse sentido, muito conhecimento já foi produzido sobre a dinâmica de fatores de transcrição que acompanha a diferenciação dos progenitores neuronais olfatórios em OSNs. Porém, uma grande lacuna no conhecimento diz respeito a outros elementos capazes de coordenar esse processo, como os fatores moduladores da cromatina. Diante desse cenário, escolhemos como objeto de estudo as proteínas do Grupo Polycomb (PcG), que constituem uma maquinaria de controle transcricional relacionada a modificações na organização da cromatina. Neste trabalho, genes PcG selecionados foram caracterizados molecular e funcionalmente no epitélio olfatório principal de camundongos (MOE). Através de ensaios de hibridação in situ, cinco dos seis genes avaliados apresentaram expressão ubíqua por todo o epitélio (Cbx2, Cbx4, Phc2, Ezh1, Bcl6), enquanto um (Ezh2) mostrou-se expresso somente nos estratos basais do MOE. Em ensaios de colocalização, provamos que Ezh2 é expresso exclusivamente nos progenitores olfatórios, onde o processo de diferenciação se inicia, e em parte dos OSNs recém-diferenciados, ainda não funcionais. Esta foi a primeira vez que a expressão de um gene PcG foi analisada detalhadamente no Sistema Olfatório. O interessante perfil de expressão de Ezh2 foi sugestivo de um possível papel funcional relacionado à diferenciação dos progenitores olfatórios. Para investigar essa hipótese, utilizamos como ferramenta experimental a habilidade do MOE em se regenerar após a indução de injúrias específicas. Para isso, o MOE de camundongos foi lesionado quimicamente com o composto diclobenil, que leva à perda abrupta de OSNs, estimulando a proliferação e a diferenciação dos progenitores olfatórios para repovoar as regiões lesionadas. Os animais assim tratados receberam, por via intranasal, o fármaco GSK126, uma molécula inibidora específica da atividade da proteína EZH2. Acompanhando a regeneração subsequente do MOE, observamos que a inibição da atividade de EZH2 levou ao incremento de OSNs no epitélio, favorecendo a sua regeneração. Interessantemente, esse incremento também foi observado em MOEs não lesionados, mostrando que o efeito de GSK126 não é dependente da indução de injúrias prévias. Através dessa investigação molecular e funcional, buscamos contribuir para o melhor entendimento da diferenciação neuronal do MOE, e apontamos as proteína PcG como elementos importantes para esse processo / Abstract: In mammals, the olfactory sensory neurons (OSNs) are located inside the nasal cavity, but they are directly exposed to the external environment. Taking advantage of the respiratory flux, this location favors the access to the chemical stimuli presented by the environment. On the other hand, it leads OSNs to be continually damaged by pathogens and toxic substances carried by the inhaled air. However, the persistence of neuronal progenitors in the olfactory epithelium makes the constant reposition of the OSNs possible. This unique ability of regeneration makes the Olfactory System one of the few sites of neurogenesis throughout the adult life. Olfactory regeneration has attracted the attention scientific community because of its potential as a model of study of the Nervous System and application in the treatment of neurodegenerative diseases. A great amount of knowledge has been accumulated about the transcription factor dynamics that follows the differentiation of neuronal progenitors into OSNs. However, there is a great gap about other elements that could coordinate this process, such as chromatin modulator factors. In this scenario, we decided to study the Polycomb Group (PcG) proteins, a transcription control machinery involved in chromatin structure organization. In the present study, selected PcG genes were molecular and functionally analyzed in the mouse main olfactory epithelium (MOE). Using in situ hybridization assays, we characterized the expression of six PcG genes. Five of them were shown to be expressed throughout the MOE (Cbx2, Cbx4, Phc2, Ezh1, Bcl6), while one (Ezh2) was found only in the basal layers of this epithelium. Using colocalization strategies, we proved that Ezh2 gene is expressed exclusively in the olfactory progenitor cells, where the differentiation process begins, and in part of the newly differentiated OSNs that are still not functional. It was the first time that a PcG gene expression profile was finely analyzed in the Olfactory System. This interesting expression profile presented by Ezh2 suggested a possible involvement with the MOE neuronal progenitor differentiation. For this functional investigation, we used MOE¿s neuronal regeneration after specific injuries as an experimental tool. For this purpose, the MOE was chemically damaged by the compound dichlobenil, which causes a great loss of OSNs, stimulating proliferation and differentiation of neuronal progenitor cells, leading to the repopulation of the damaged tissue. Next, mice received by intranasal route the pharmacological inhibitor GSK126, which blocks EZH2 protein activity. The observation of the MOE regeneration that followed showed us that GSK126 application resulted in an increased number of OSNs, improving MOE regeneration. Interestingly, this increase was also found in intact MOEs, pointing that GSK126¿s effects do not depend on previous olfactory injuries. By this molecular and functional investigation, we aimed at a better understanding of olfactory neuronal differentiation, and we targeted the PcG proteins as relevant elements to this process / Mestrado / Genetica Animal e Evolução / Mestre em Genética e Biologia Molecular
6

Identification and characterization of Polycomb repressed gene-enhancer loops / Identification et caractérisation des boucles entre les promoteurs des gènes réprimés par Polycomb et les enhancers dans les cellules souches embryonnaires des souris

Souaid, Charbel 25 January 2019 (has links)
Dans les cellules souches embryonnaires de souris (mESCs), le groupe de protéines Polycomb (PcG) répriment les gènes de développement en participant ainsi à la maintenance de l’état de pluripotence. Ce complexe dépose la H3K27me3au niveau des éléments régulateurs induisant une compaction de la chromatine. Cette marque forme en plus des marquesactives H3K4me3 présentes des domaines bivalents. Etrangement, des boucles d’ADN dites entre le promoteur et enhancer, généralement associé à l’activation du gènes, sont observées au niveau des gènes bivalents avant leur activation.On suppose que la fonction du PcG pourrait être de neutraliser l'enhancer conférant une future activation rapide des gènes.Au cours de ma thèse, j’ai identifié les boucles d’ADN formé par les réprimés par PcG dans les mESCs. Pour cela,j’ai effectué un profilage épigénomique de 4 marques d'histones et identifié près de 2500 promoteurs bivalents et 13000enhancers. En utilisant des données publiées de Hi-C à haute résolution, j’ai identifié toutes les boucles formées par les domaines bivalents. Etonnement, j’ai pu identifier que de nombreux gènes réprimés par PcG interagissent avec des enhancers actifs. Cette observation a été suivie d'une validation par le 4C-seq. De plus, j’ai effectué une caractérisation fonctionnelle des boucles en utilisant deux approches. Tout d'abord, j'ai mis en place, en collaboration avec D. Bourc'his(Institut Curie), un système de culture de mESCs (2i + VitC) où le taux de H3K27me3 est réduit. J'ai effectué un profilage épigénomique similaire révélant que les promoteurs réprimés par PcG ont perdu la marque H3K27me3. En RNA-seq, j’ai démontré que l’expression des gènes ne change pas après le PcG soit détacher des promoteurs.. Ensuite, par la réalisation de plusieurs validations en 4C-seq j’ai démontré que les interactions avec les enhancers ne sont pas affecté alors que la moitié des enhancers interagissant perdent leurs marques activatrices. Dans le système 2i+VitC, ces gènes semblent être réprimés par un autre mécanisme suite à la perte du PcG. De plus, j’utilise une approche ciblée pour enlever localement laH3K27me3 de deux gènes bivalents en utilisant le système Cette technique est en cours d’optimisation.Notre étude est la plus systématique au niveau génomique des boucles d'ADN dans le cadre de la régulation des gènes PcG. Notre étude révèle une nouvelle fonction du PcG qui est la répression de boucle d’ADN déjà établies entre promoteurs et enhancers. / In the mouse embryonic stem cells (mESCs), Polycomb Group Proteins (PcG) repress developmental genes and thereby participating in the maintenance of the pluripotency. PcG repress genes by depositing the H3K27me3 histone marks on their regulatory elements, followed by chromatin compaction. In addition to the H3K27me3 marks, those genes carry H3K4me3 active marks and were characterized as bivalent. Intriguingly, at many PcG repressed genes, DNA loops can be observed with enhancer elements, which are normally thought to have an activating function. The aim of my project is to both describe and mechanistically dissect the function of Polycomb repressed promoter – enhancer loops.During my PhD, I aimed firstly to identify all promoter–enhancer loops involved by PcG repressed genes in mESCs. I have performed ChIP-seq profiling of 4 histone marks and identified around 2500 PcG repressed promoters and 13000 enhancers. Using a recently published high-resolution Hi-C data in mESCs, I have identified all DNA loops that are formed by PcG repressed promoters. Surprisingly, a high percentage of bivalent promoters were found to contact active enhancers. The presence of those loops were validated by ultra-high 4C-seq on selected genes and imply a small significant increase of the gene expression without leading to a complete activation of the gene. I have established a more physiological ESC model (2i+VitC) where H3K27me3 is reduced at all promoters. I have performed ChIP-seq, where bivalent promoters were all classified as H3K27me3 negative. RNA-seq experiments have showed that those genes do not become activated. 4C-seq experiments have revealed that those loops do not disappear after PcG removal, whereas the half of interacted enhancer loose their H3K27ac active marks. Those genes seem to remain repressed by an unknown mechanism. These results argue for a possible role of PcG in preparing the gene for their activation by blocking the productivity of such DNA loops. Secondly, I aimed to functionally characterize those DNA loops by using a CRISPR/dCas9 approach to completely remove H3K27me3 from two PcG repressed genes that contact active enhancers Pax6 and Nkx1-1 genes. This system is still under optimization steps.My project revealed the most systematic characterization of DNA loops under the regulation of PcG, providing important insight how PcG function to inactivate such loops. I have highlighted an additional function of PcG which the involvement in the repression of already establish loops between active enhancers and promoters and thereby blocking the productivity of such activating loops. This function is an addition to the already described repressive function of PcG on both promoters and poised enhancers.
7

The Role of Polycomb Repressive Complex 2 in Epidermal Homeostasis and Hair Growth

Asamaowei, Inemo E. January 2017 (has links)
Polycomb repressive complex 2 (PRC2) catalyses the methylation of ‘Lys-27’ of histone H3, leading to transcriptional repression of target genes through its catalytic subunit Enhancer of zeste homolog 1/2 (EZH1/2). PRC2 functions as a critical regulator of stem cells in mouse embryonic and adult tissues. However, the role of PRC2 in human skin remains largely unknown. This study investigated the role of PRC2 in human epidermal homeostasis and hair growth. The expression of EZH2 was elevated in differentiating suprabasal layers of the human epidermis. Consistently, EZH1/2 expression and enzymatic activity was upregulated in differentiating primary human keratinocytes (NHEKs) in vitro. Inhibition of EZH2 and Embryonic ectoderm development (EED) in NHEKs stimulated the expression of differentiation-associated genes, therefore leading to their premature differentiation; while inhibition of EZH1/2 reduced cell proliferation and promoted apoptosis. Silencing of EZH2 in NHEKs induced complex changes in gene expression programmes, including the upregulation of terminal differentiation genes, such as Filaggrin. EZH2 expression was downregulated in aged keratinocytes accompanied with upregulation of senescence-associated genes, p16INK4A and p19INK4D, suggesting EZH2 involvement in epidermal aging. In human anagen hair follicle (HF), EZH2 was detected in stem and progenitor cells; and hair matrix keratinocytes. Silencing EZH2 in HFs accelerated anagen-catagen transition and retarded hair growth accompanied by decreased proliferation and increased apoptosis. Silencing EZH2 in outer root sheath keratinocytes resulted in upregulation of p14ARF and K15, suggesting EZH2 involvement in regulating proliferation and stem cell activity. Thus, this study demonstrates that PRC2-mediated repression is crucial for epidermal homeostasis and hair growth. Modulating the activities of PRC2 in skin might offer a new therapeutic approach for disorders of epidermal differentiation and hair growth.
8

Protein dynamics in the nucleus: Implications for gene expression / Proteindynamik im Zellkern: Auswirkungen auf die Genexpression

Ficz, Gabriella 16 July 2005 (has links)
No description available.
9

An RNAi screen to identify factors that control the binding of polycomb group proteins to the chromatin across the cell cycle

Huang Sung, Aurélie 03 1900 (has links)
L’établissement et le maintien du patron d’expression génique sont d’une importance critique pour l’identité cellulaire. Les protéines du groupe Polycomb (PcG) agissent sur la chromatine afin de maintenir la répression génique de ses gènes cibles à travers les cycles cellulaires de façon épigénétique. Toutefois, durant la mitose, la structure de la chromatine est grandement altérée par la répression de la transcription, la condensation de la chromatine et le relâchement de nombreux facteurs de transcription. Une question se pose alors : comment les protéines PcG peuvent-elles maintenir leur fonction à travers la mitose ? En interphase, les protéines PcG sont liées à leurs cibles sur la chromatine. Durant la mitose, la majorité des protéines PcG se libèrent de la chromatine mais une petite fraction persiste. Selon l’hypothèse du mitotic bookmarking, cette fraction agirait comme un ensemble de marqueurs guidant le recrutement des protéines PcG en fin de mitose pour maintenir le profil d’expression génique de la cellule. Cependant, nous ne savons pas comment ce recrutement à lieu, ni comment une fraction de protéines PcG est retenue à la chromatine. Afin de répondre à ces questions, un crible à ARN interférent a été établi pour identifier des facteurs contrôlant la liaison des protéines PcG à la chromatine à travers le cycle cellulaire. Quoiqu’une confirmation soit nécessaire, les facteurs spécifiques à l’interphase sont enrichis en protéines co-purifiant avec la protéine PcG testée et en hélicases alors que ceux spécifiques à la mitose sont enrichis en candidats liés aux protéines du groupe Trithorax (TrxG). / A critical part of cell identity is the establishment and maintenance of gene expression patterns. Polycomb group proteins (PcG) act on chromatin to maintain gene repression through cell cycles (epigenetically). However, during mitosis, chromatin structure is greatly altered by transcription repression, chromatin condensation, and the release of many transcription factors. A question then arises: how can PcG proteins maintain their function through mitosis? During interphase, PcG proteins are bound to their chromatin targets. During mitosis, most PcG proteins are released from chromatin, but a small fraction remains bound to chromatin. According to the mitotic bookmarking hypothesis, this fraction acts as a set of markers to guide the recruitment of PcG proteins at the end of mitosis to maintain the gene expression profile. However, we do not know how this recruitment takes place, nor do we know how a fraction of PcG proteins is retained on chromatin. To address these questions, an RNAi screen was established to identify factors that control the binding of PcG proteins to chromatin across the cell cycle. Although a confirmation is necessary, factors identified from interphase cells were enriched in proteins co-purifying with the tested PcG protein and in helicases while mitosis specific factors were enriched in Trithorax group (TrxG) protein related candidates.
10

Pou5f1 Post-translational Modifications Modulate Gene Expression and Cell Fate

Campbell, Pearl 20 December 2012 (has links)
Embryonic stem cells (ESCs) are characterized by their unlimited capacity for self-renewal and the ability to contribute to every lineage of the developing embryo. The promoters of developmentally regulated loci within these cells are marked by coincident epigenetic modifications of gene activation and repression, termed bivalent domains. Trithorax group (TrxG) and Polycomb Group (PcG) proteins respectively place these epigenetic marks on chromatin and extensively colocalize with Oct4 in ESCs. Although it appears that these cells are poised and ready for differentiation, the switch that permits this transition is critically held in check. The derepression of bivalent domains upon knockdown of Oct4 or PcG underscores their respective roles in maintaining the pluripotent state through epigenetic regulation of chromatin structure. The mechanisms that facilitate the recruitment and retention of Oct4, TrxG, and PcG proteins at developmentally regulated loci to maintain the pluripotent state, however, remain unknown. Oct4 may function as either a transcriptional activator or repressor. Prevailing thought holds that both of these activities are required to maintain the pluripotent state through activation of genes implicated in pluripotency and cell-cycle control with concomitant repression of genes required for differentiation and lineage-specific differentiation. More recent evidence however, suggests that the activator function of Oct4 may play a more critical role in maintaining the pluripotent state (Hammachi et al., 2012). The purpose of the studies described in this dissertation was to clarify the underlying mechanisms by which Oct4 functions in transcriptional activation and repression. By so doing, we wished to contextualize its role in pluripotent cells, and to provide insight into how changes in Oct4 function might account for its ability to facilitate cell fate transitions. As a result of our studies we find that Oct4 function is dependent upon post-translational modifications (PTMs). We find through a combination of experimental approaches, including genome-wide microarray analysis, bioinformatics, chromatin immunoprecipitation, functional molecular, and biochemical analyses, that in the pluripotent state Oct4, Akt, and Hmgb2 participate in a regulatory feedback loop. Akt-mediated phosphorylation of Oct4 facilitates interaction with PcG recruiter Hmgb2. Consequently, Hmgb2 functions as a context dependent modulator of Akt and Oct4 function, promoting transcriptional poise at Oct4 bound loci. Sumoylation of Oct4 is then required to maintain Hmgb2 enrichment at repressed loci and to transmit the H3K27me3 mark in daughter progeny. The expression of Oct4 phosphorylation mutants however, leads to Akt inactivation and initiates the DNA Damage Checkpoint response. Our results suggest that this may subsequently facilitate chromatin reorganization and cell fate transitions. In summary, our results suggest that controlled modulation of Oct4, Akt, and Hmgb2 function is required to maintain pluripotency and for the faithful induction of transcriptional programs required for lineage specific differentiation.

Page generated in 0.4722 seconds