• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 47
  • 45
  • 16
  • 16
  • 14
  • 9
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 481
  • 73
  • 70
  • 53
  • 52
  • 35
  • 33
  • 31
  • 28
  • 28
  • 28
  • 28
  • 27
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Materials and Methods for Algae Preconcentration

Venkatagiri, Avinash 24 September 2014 (has links)
No description available.
112

FabricWorm: A Biologically-Inspired Robot That Demonstrates Structural Advantages of a Soft Exterior for Peristaltic Locomotion

Mehringer, Anna G. 02 June 2017 (has links)
No description available.
113

REVISITING THE MALL

WILLIAMS, MELISSA LYNN 07 July 2003 (has links)
No description available.
114

ReTHINK New Orleans: Bridging the Gap Between Disciplines to Create a VISION for the Community

Hall, Bridget T. 14 July 2009 (has links)
No description available.
115

An Investigation of AMS in Oman Ophiolite Gabbros

Trutner, Sarah D. 12 August 2016 (has links)
No description available.
116

STRUCTURAL ANALYSIS AND 3D KINEMATIC RESTORATION OF THE SOUTHERN SUDBURY BASIN, ONTARIO.

Lenauer, Iris 10 1900 (has links)
<p>This thesis addresses the spatial distribution of structures and deformation geometry in the southern Sudbury Basin, Ontario, a synclinal fold basin. Major components are low-temperature fabric development in the Sudbury Igneous Complex (SIC), the relation between fabrics and fold structures in Huronian rocks, and kinematic modeling of deformation of the southern Sudbury Basin. These topics lead to a synthetic model of the structural history of the SIC and its host rocks. Analysis of structures in the Norite layer of the SIC shows that this unit deformed under a single deformation regime and variable rheological conditions. This is evident by foliation planes, folded granitoid dikes, brittle shear faults and ductile high-strain zones. Brittle deformation preceded the formation of foliation planes and caused hydrolytic weakening of the Norite. Bulk thinning led to steepening of lithological contacts and igneous layering in the SIC. Structures in Huronian rocks and Sudbury Breccia display components of post-impact deformation that cannot be accounted for by thrusting along a high-strain zone, the so-called South Range Shear Zone, and by large-scale folding of the SIC. Shape change of the SIC from a convex outward to concave inward geometry led to basin-concentric shortening, the formation of a buckle fold of the SIC and axial-planar fabrics in Huronian rocks. Mutually perpendicular fabric orientations compatible with overall NW-SE shortening indicate that discordant foliations can form as a consequence of local strain perturbations near lithological contacts. Kinematic modelling of deformation based on field-based structural data tests the validity of trishear fault propagation folding as a possible deformation mechanism for the southern Sudbury Basin. Trishear deformation of the central South Range accounts for angular discordances between the upper and basal contacts of the SIC, local overturning of southern SIC, steepening of foliation planes, strain gradients in the Sudbury Basin, and thickness variations of SIC layers. Implications are shallowly dipping SIC layers both at greater depths and above the current erosion level, translation of Huronian rocks, and thinning in a section of the trishear zone manifested at surface by the South Range Shear Zone.</p> / Doctor of Philosophy (PhD)
117

Micromechanical Analysis of Induced Anisotropy in Granular Materials

Shi, Jingshan January 2018 (has links)
Granular materials, such as sand, are systems consisting of huge numbers of particles that interact with each other through inter-particle contacts. Different from continuum materials, a granular material displays distinctive features due to the discrete nature of the microstructure, characterized by a spatial arrangement of inter-particle connection as well as a force-chain network. With a consideration of the contact force, the overall contact network is divided into a strong sub-network and a weak sub-network that carry contacts with normal contact forces larger and lower than the average normal contact force, respectively. Thus, the fabric anisotropy for different contact networks, are employed to characterize the microstructure of the granular material. In this research, the behavior of granular materials subjected to quasi-static shear was extensively investigated in terms of the fabric evolution including the magnitude and direction of anisotropy for different contact networks. Both statistical and micromechanical approaches were adopted to obtain the macroscopic properties, such as the fabric tensor, Cauchy stress tensor and the second-order work, in terms of the micro-scale variables. The discrete element method (DEM) was employed to simulate laboratory tests along fixed loading paths; for example, 2D tests along proportional strain paths, 2D simple shear tests and 3D tests along radial stress paths on the π-plane. Results demonstrated that the induced fabric anisotropy for the overall contact network can be related to the deviatoric stress ratio for both two-dimensional and three-dimensional conditions. The relation was found to be not unique, depending on the loading paths as well as the stress state. Nevertheless, a unique linear fabric-stress relation was presented between the stress tensor and fabric tensor for the strong sub-network. Specifically, the obliquity of this linear relation was found to be a function of the mean stress. This description held true for initially isotropic specimens subjected to proportional and non-proportional loading paths. On the other hand, for the initially anisotropic specimen, this correspondence only worked at the critical stress state. According to Nicot and Darve (2006), the macro second-order work cannot be interpreted as a summation of the local second-order work from the contact plane. The second-order work induced by the fabric evolution and the volumetric change must also be taken into account. The second-order work induced by the fabric evolution cannot be neglected in 2D analysis along proportional strain paths. Moreover, the vanishing of the second-order work is related to the fabric anisotropy in contact sub-networks that the decrease of fabric anisotropy for the weak sub-network or the degradation of weak sub-network was observed to be an indicator of deformation instability even though the strong sub-network dominants the shear resistance. The degradation of strong sub-network was a necessary but not a sufficient condition of instability. The direction of the fabric anisotropy for the strong sub-network was observed to be coaxial with the orientation of the principal stress. The principal direction of fabric anisotropy for the weak sub-network was always perpendicular to that of the strong sub-network, regardless of whether the principal stress rotated or not. For the overall contact network, however, the direction of the fabric anisotropy was not necessarily in line with the major principal stress direction, even for an initial isotropic granular assembly. Therefore, the finding by Radjaï et al.(1998) that the direction of the fabric anisotropy for the weak sub-network is perpendicular to that for the overall contact network only held true for the loadings in which the critical stress could be approached no matter if the principal stress orientation rotated or not. Under this circumstance, the fabric anisotropy for the overall contact network could be interpreted as a function of sub-networks’ anisotropy weighted by the ratio of contact number in each sub-network over the total number of contacts. At critical state, both the strong sub-network and the overall contact network developed high fabric anisotropy with the weak sub-network being mostly isotropic. When plotted on the π-plane, both the fabric anisotropy for the strong sub-network and the fabric anisotropy for the overall contact network depended on the stress paths but were independent of the mean stress level. The response surface of the former could be expressed as a Lade’s surface. The response envelope of the latter was an inverted Lade’s surface. / Dissertation / Doctor of Philosophy (PhD) / In civil engineering, granular materials are ubiquitous, such as sand, gravel, rock, and concrete. Due to the discrete nature of microstructure, this type of material usually displays exceedingly complicated behaviours under shear, for example, dilatancy, non-coaxiality, critical state, instability, and anisotropy. These mechanical responses are notoriously difficult to model and most existing models are phenomenological and lack a clear physical meaning. To provide a clear physical meaning for the constitutive model of granular material, the current study explored the evolution of the microstructure within the granular material subjected to quasi-static shear and the micromechanical origins of those macroscopic behaviours such as critical state, non-coaxiality, and instability. Both micromechanical analysis and discrete element method were applied. Results showed that the evolution of the whole microstructure depended on the loading condition. However, the evolution of the microstructure joined by the ‘strong contacts’ was independent of the loading path. At critical state, the microstructure was highly anisotropic, not unique and depended on the stress paths. The rearrangement of the microstructure helped to maintain the stability of a granular material. The instability of the granular material was triggered by the failure of the microstructure joined by the ‘weak contacts’.
118

Etudes in Making: poems of construction

Iwai, Leslie Tamako 06 January 1999 (has links)
Within this Book is a glimpse of the world that was brought forth from my thesis work. When beginning to find the place of the thesis work, I assumed that I should be making an architectural construction at the scale of building, the scale in which I then believed architecture existed. Knowing that I wanted to find a way of making where I could physically construct every thing I was to make in a careful architectural manner, I hoped that this consideration would lend itself to the design of a building (the kind that people can physically inhabit). What I found was that the building I am making is of a different sort of inhabiting, and that I have been able, through making, to hone my tools. With these I can come to a site(situation), and begin to make decisions that are in the world of architecture. The textile article, one made of woven fibre, is continually referenced throughout this thesis. Being assured of the very close connection between fabric and building (Oxford English Dictionary definition), A Building as being a Fabric, I have explored the literal physical kinds of connections to which fabric lends itself. Fabric items (those made with fibre) engage the world of the temporary connection (a button, a tied closure), because of this, the exploration of temporary construction was naturally a part of this thesis. Finding that though physically temporary, the connection between a site and its construction, can have a presence that has more permanence in its temporal quality than if it were to have a more physical permanence. During the making of each thing, it became clear to me that the woven must have limits; there is a beginning and a completion (Looms have a frame for construction with particular dimensional limits). What is that beginning and completion in each of the thesis projects, what is the construction? In order to have a metaphorical and physical understanding for myself it has been necessary to bring back that question into the realm of the textile and fabric article. What do you do with fabric? It is sewn into particular constructions. This particularity has the beginnings and completions to transform fabric into made things. The woven stuff can go on forever but it takes decision and an idea to take the material into a physical realization. It occurred to me that when one uses material in any form to create a construction, there are particular decisions made that have to stop the woven thing and bind it so that it can be made into something in particular. It seems that within the world of architecture it is important to know when to stop an action and when to make a decision, not letting something default into indistinguishablity. / Master of Architecture
119

Negotiating Material Description Through Technology

Leal, Anamary 06 September 2017 (has links)
Designers and non-designers alike often describe fabric in ways that are markedly different or unclear. For example, two designers might attribute qualities such as ``heavy'' to a material, but actually mean completely different things, despite using the same words. This ambiguity in description becomes more prominent when the designer has to make sense of the fabric remotely, such as shopping online. This ambiguity in description presets an opportunity to study user interface design that supports, rather than diminishes, the role of ambiguity, which is often a resource in design domains. Our most important research question was: How can we design interfaces with standard interface toolkits to help designers explore and understand material remotely? For our approach, we studied how people described distinct fabrics, from experts, novices, to everyday people and the crowdsourcing community on how they interpret fabrics. We applied that information to designs that communicated materiality and ambiguity in various ways, and studied how interfaces affected a user's process of exploring materials and negotiating the meaning of materiality. The most important findings are user interface guidelines that apply to designing technology any domain focused on description and ambiguity, such as design domains. Such design guidelines include: (1) the importance to communicate distinctions between description and category, (2) The role of ambiguity in design, while well-supported in the literature, is a value not shared among all practitioners, and (3) a better understanding of the different ways users negotiate with description and make sense of material remotely. / Ph. D.
120

The Effects of Household Fabric Softeners on the Thermal Comfort and Flammability of Cotton and Polyester Fabrics

Guo, Jiangman 22 May 2003 (has links)
This study examined the effects of household fabric softeners on the thermal comfort and flammability of 100% cotton and 100% polyester fabrics after repeated laundering. Two fabric properties related to thermal comfort, water vapor transmission and air permeability, were examined. A 3 X 2 X 3 experimental design (i.e., 18 experimental cells) was developed to conduct the research. Three independent variables were selected: fabric softener treatments (i.e., rinse cycle softener, dryer sheet softener, no softener), fabric types (i.e., 100% cotton, 100% polyester), and number of laundering cycles (i.e., 1, 15, 25 cycles). Three dependent variables were tested: water vapor transmission, air permeability, and flammability. The test fabrics were purchased from Testfabrics, Inc. To examine the influence of the independent variables and their interactions on each dependent variable, two-way or three-way Analysis of Variance (ANOVA) tests were used to analyze the data. Results in this study showed that both the rinse cycle softener and the dryer sheet softener significantly decreased the water vapor transmission of test specimens to a similar degree. The rinse cycle softener decreased the air permeability of test specimens most and was followed by the dryer sheet softener. The rinse cycle softener increased the flammability of both cotton and polyester fabrics, but the dryer sheet softener had no significant effect on the flammability of both fabric types. Statistical analysis also indicated that the interactions were significant among the independent variables on water vapor transmission, air permeability, and flammability of the test specimens. For example, the rinse cycle softener significantly decreased the water vapor transmission and air permeability of cotton fabric but had no effect on polyester fabric. The dryer sheet softener also decreased the water vapor transmission of cotton fabric but had no effect on polyester fabric, and it had no effect on the air permeability of both cotton and polyester fabrics. In addition, the air permeability of cotton specimens treated with the rinse cycle softener continuously reduced after repeated laundering, but that of polyester fabrics treated with the rinse cycle softener only reduced after 15 laundering cycles and showed no continuous decrease when laundering cycles increased. When the influence of fabric softener treatments on flammability was examined, the results showed that the more the specimens were laundered with the rinse cycle softener, the greater the flammability of the test specimens. However, the dryer sheet softener did not have a significant effect on the flammability of the test fabrics even after repeated laundering. For the polyester fabric, all specimens treated with the dryer sheet softener or no softener passed the standard of children's sleepwear even after 25 laundering cycles, but those treated with the rinse cycle softener did not pass the standard. In conclusion, fabric softener treatment had a significant influence on the thermal comfort (i.e., water vapor transmission and air permeability) and flammability of 100% cotton and 100% polyester fabrics after repeated laundering cycles and the effects were significantly different among the three independent variables (i.e., fabric softener treatments, fabric types, and number of laundering cycles). The applications of these results were also discussed. / Master of Science

Page generated in 0.0301 seconds