• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How to determine the fuel consumption for a hydrogen light commercial vehicle project to be competitive? / Hur kan man fastställa bränsleförbrukningen för att ett projekt för lätta kommersiella vätgasfordon ska vara konkurrenskraftigt?

Hissler, Clément January 2022 (has links)
The automotive industry and the whole transport sector are currently facing the need to act against climate change. In fact, over the globe the passenger road vehicles emitted 3.6 Gt of CO2 in 2018 and the road freight vehicles emitted 2.4 Gt of CO2 [1]. These road and freight emissions represents 11% and 7% of the total CO2 emissions that year respectively [2]. One solution that has been chosen to limit and reduce the greenhouse gas (GHG) emissions from road transportation is to shift from internal combustion engine (ICE)-based vehicles to electric vehicles which will emit no GHG during operation. There are mainly two types of electric vehicles suitable for this purpose. The first one is the battery electric vehicles (BEVs) which is already commercially and industrially mature and already on the road (11.3 million in 2020 [3]). It uses large Li-ion batteries to store the energy on-board to then power the electric motors. The second one is the fuel cell electric vehicles (FCEVs) which is still being researched and whose number on the road is quite limited (34.8 thousand in 2020 [4]). Yet, this technology is suitable for many applications and especially the light commercial vehicles (LCVs). The stakes of this technology have been studied regarding the current market of LCVs in France and by comparing it to BEVs in terms of cost and mass. To better frame the development of new hydrogen LCVs, a tool has also been developed to calculate the range of such vehicles throughout the life of the project and the evolution of its specifications. The analysis of the market and the comparison between FCEVs and BEVs is not exhaustive and only some specific points have been dealt with, enough to give an overview of the main stakes of hydrogen LCVs. The tool developed is limited to simple input data as it aims to be used with little information at an early stage of the project. / Fordonsindustrin och hela transportsektorn står för närvarande inför behovet av att agera mot klimatförändringarna. I själva verket släppte personbilar över hela världen ut 3,6 Gt CO2 under 2018 och godstransportfordon släppte ut 2,4 Gt CO2 [1]. Dessa väg- och fraktutsläpp utgör 11 % respektive 7 % av de totala koldioxidutsläppen det året [2]. En lösning som har valts för att begränsa och minska växthusgasutsläppen från vägtransporter är att övergå från förbränningsmotor (ICE)-baserade fordon till elfordon som inte släpper ut några växthusgaser under drift. Det finns huvudsakligen två typer av elfordon som lämpar sig för detta ändamål. Den första är batteridrivna elfordon (BEV) som redan är kommersiellt och industriellt mogna och redan finns på vägarna (11,3 miljoner år 2020 [3]). Den använder stora litiumjon-batterier för att lagra energin ombord för att sedan driva elmotorerna. Den andra är bränslecellsdrivna fordon (FCEV) som fortfarande är föremål för forskning och vars antal på vägarna är ganska begränsat (34 800 år 2020 [4]). Denna teknik lämpar sig dock för många tillämpningar, särskilt för lätta fordon. Man har undersökt vad som står på spel för denna teknik med hänsyn till den nuvarande marknaden för lätta fordon i Frankrike och genom att jämföra den med BEV-fordon när det gäller kostnad och massa. För att bättre kunna hantera utvecklingen av nya vätgasdrivna lätta fordon har ett verktyg utvecklats för att beräkna räckvidden för sådana fordon under projektets hela livslängd och utvecklingen av dess specifikationer. Marknadsanalysen och jämförelsen mellan FCEV och BEV är inte uttömmande och endast vissa specifika punkter har behandlats, vilket räcker för att ge en översikt över de viktigaste insatserna för vätgasdrivna lätta fordon. Det utvecklade verktyget är begränsat till enkla indata eftersom det är avsett att användas med lite information i ett tidigt skede av projektet.
2

Modellbildung und Simulation der Thermomanagementstrukturen von Brennstoffzellenfahrzeugen

Rathke, Philipp, Ehrlich, Florian, von Unwerth, Thomas 27 May 2022 (has links)
Das Thermomanagement in Brennstoffzellenfahrzeugen (FCEV) stellt eine komplexe Herausforderung dar. Insbesondere, wenn im Zuge thermischer Optimierungen, wie sie bereits im Bereich batterieelektrischer Fahrzeuge etabliert sind, komplexe Verschaltungen der beteiligten Fahrzeugsysteme vorgenommen werden. Im Rahmen des Forschungsprojektes HZwo:InTherm wurden an der TU Chemnitz verschiedene Ansätze zur Simulation von Thermomanagementstrukturen in Brennstoffzellenfahrzeugen (FCEV) sowohl in Matlab/Simulink als auch in KULI untersucht. Augenmerk lag hierbei auf einem stabilen Zusammenspiel der Teilsysteme Brennstoffzelle, Hybridbatterie, Tanksystem, Wärmepumpe, Fahrgastzelle sowie Traktionsmaschine und Leistungselektronik. Als besondere Herausforderung zeigte sich hierbei die Simulation geschlossener Kühlkreisläufe mit inkompressiblem Kühlmedium sowie die Umsetzung eines möglichst generalisierten Modellaufbaus für die implementierten Teilmodelle. Im Rahmen dieses Beitrags sollen sowohl die Modellierungsansätze als auch die erzielten Ergebnisse vorgestellt und diskutiert werden. / Thermal management in fuel cell electric vehicles (FCEV) poses a complex challenge. Especially for thermal optimisations with complex interconnections, as it is already state of the art in battery electric vehicles. Within the research project HZwo:InTherm different approaches for the simulation of thermal management systems of FCEV have been under investigation, in both Matlab/Simulink as well as in KULI. Focus was the stable interaction of the subsystems fuel cell, hybrid battery, tank system, heat pump, passenger cabin as well as traction motors and inverters. A particular challenge is the simulation of a closed coolant loop with incompressible coolant liquid and its model realization with generalized model structures for the different parts of the model. This article presents both the modelling approach as well as the simulation results.
3

Analýza současného vývoje elektromobility, porovnání různých druhů pohonů / Analysis of the current development of electromobility, comparison of different types of drives

Vobecký, Jan January 2021 (has links)
The diploma thesis focuses on the analysis of the current development of electromobility and the description of different types of drives. The first part deals with the basic theory of electric vehicles on batteries, hybrid vehicles and fuel cell vehicles. The second part provides analysis and data on the offered electric cars. At the end of the work is an evaluation of the situation.
4

Analysis of a hydrogen-based transport system and the role of public policy in the transition to a decarbonised economy. / Choix de politiques sectorielles pour la décarbonisation de l’économie. Application au cas de l’hydrogène pour le secteur du transport

Kotelnikova, Alena 03 October 2016 (has links)
Quel cadre économique et réglementaire à long terme (2030-50) pour soutenir la transition énergétique des carburants fossiles vers l’hydrogène dans le secteur européen des transports ? Cette recherche combine les approches théoriques et empiriques pour répondre aux trois questions suivantes :1. Comment concevoir des politiques de soutien adaptées pour pallier les imperfections de marché lors du déploiement de technologies de mobilité hydrogène ?2. Comment modéliser les coûts d’abattement en tenant compte des effets d’apprentissage (LBD) ?3. Comment définir la trajectoire optimale de déploiement quand le LBD et la convexité des coûts d’investissement sont présents ?L’article ‘Transition vers un Système de Transport de Passagers à Hydrogène : Analyse Politique Comparée’ passe au crible des politique de soutien destinées à résoudre les imperfections de marché dans le déploiement de la mobilité hydrogène. L’article effectue une comparaison internationale entre les instruments en faveur du déploiement des véhicules. Les indicateurs ex post d’efficacité des politiques sont développés et calculés pour classifier les pays selon leur volontarisme dans la promotion des véhicules à piles à combustible (FCEV). Aujourd’hui le Japon et le Danemark apparaissent comme les meilleurs fournisseurs d’un environnement favorable au déploiement de la mobilité hydrogène. Les autorités locales introduisent de solides instruments prix (tels que des subventions et des exemptions fiscales) pour rendre le FCEV plus attractif par rapport à son analogue à essence et coordonnent le déploiement de l’infrastructure hydrogène sur le territoire.L’article ‘Modélisation des Coûts d’Abattement en Présence d’Effets d’Apprentissage : le Cas du Véhicule à Hydrogène’ présente un modèle de transition du secteur des transports d’un état polluant à un état propre. Un modèle d’équilibre partiel est développé pour un secteur automobile de taille constante. L’optimum social est atteint en minimisant le coût de la transition du parc automobile au cours du temps. Ce coût comprend les coûts privés de production des véhicules décarbonés (sujets aux effets d’apprentissage) ainsi que le coût social des émissions de CO2 qui suit une tendance haussière exogène. L’article caractérise la trajectoire optimale qui est un remplacement progressif des véhicules polluants par les décarbonés. Au cours de la transition, l’égalisation des coûts marginaux tient compte de l’impact des actions présentes sur les coûts futurs via l’effet d’apprentissage. L’article décrit aussi une trajectoire sous-optimale où la trajectoire de déploiement serait une donnée exogène : quelle serait alors la date optimale de début de la transition ? L’article présente une évaluation quantitative de la substitution des FCEV aux véhicules à combustion interne (ICE). L’analyse conclut que le FCEV deviendra une option économiquement viable pour décarboner une partie du parc automobile allemand à l’horizon 2050 dès que le prix du carbone atteindra 50-60€/t.L’article ‘Le rôle des Effets d’Apprentissage dans l’Adoption d’une Technologie Verte : le Cas LBD Linéaire’ étudie les caractéristiques d’une trajectoire optimale de déploiement des véhicules décarbonés dans le cas où les effets d’apprentissage et la convexité sont présents dans la fonction de coût. Le modèle d’équilibre partiel de Creti et. al (2015) est utilisé comme point de départ. Dans le cas LBD linéaire la trajectoire de déploiement optimale est obtenue analytiquement. Un apprentissage fort induit une transition antérieure vers les véhicules verts dans le cas d’une convexité faible et une transition ultérieure dans le cas d’une convexité forte. Ce résultat permet de revisiter le projet H2 Mobility en Allemagne. Un effet d’apprentissage plus fort et une accélération du déploiement aboutissent à une transition moins coûteuse et une période de cash flow négatif plus courte. / What economic and policy framework would foster a transition in the European transport sector from fossil fuels to hydrogen in the long term (2030-50)? This research combines empirical and theoretical approaches and aims to answers the following questions:1. How to design appropriate policy instruments to solve inefficiencies in hydrogen mobility deployment?2. How to define abatement cost and an optimal launching date in the presence of learning-by-doing (LBD)?3. How to define an optimal deployment trajectory in presence of LBD and convexity in investment costs?The paper ‘Transition Towards a Hydrogen-Based Passenger Car Transport: Comparative Policy Analysis‘ draws a cross-country comparison between policy instruments that support the deployment of Fuel Cell Electric Vehicle (FCEV). The existing policy framework in favour of FCEV and hydrogen infrastructure deployment is analysed. A set of complementary ex-post policy efficiency indicators is developed and calculated to rank the most active countries, supporters of FCEV. Denmark and Japan emerge as the best providers of favourable conditions for the hydrogen mobility deployment: local authorities put in place price-based incentives (such as subsidies and tax exemptions) making FCEV more financially attractive than its gasoline substitute, and coordinate ramping-up of their hydrogen infrastructure nationally.The paper ’Defining the Abatement Cost in Presence of Learning-by-doing: Application to the Fuel Cell Electric Vehicle’ models the transition of the transport sector from a pollutant state to a clean one. A partial equilibrium model is developed for a car sector of a constant size. In this model the objective of the social planner is to minimize the cost of phasing out a stock of polluting cars from the market over time. The cost includes the private cost of green cars production, which are subject to LBD, and the social cost of carbon, which has an exogenous upward trend. During the transition, the equalization of marginal costs takes into account the fact that the current action has an impact on future costs through LBD. This paper also describes a suboptimal plan: if the deployment trajectory is exogenously given, what is the optimal starting date for the transition? The paper provides a quantitative assessment of the FCEV case for the substitution of the mature Internal Combustion Engine (ICE) vehicles. The analysis concludes that the CO2 price should reach 53€/t for the program to start and for FCEV to be a socially beneficial alternative for decarbonizing part of the projected German car park in the 2050 time frame.The impact of LBD on the timing and costs of emission abatement is, however, ambiguous. On the one hand, LBD supposes delaying abatement activities because of cost reduction of future abatement due to LBD. On the other hand, LBD supposes starting the transition earlier because of cost reduction due to added value to cumulative experience. The paper ‘The Role of Learning-by-Doing in the Adoption of a Green Technology: the Case of Linear LBD’ studies the optimal characteristics of a transition towards green vehicles in the transport sector when both LBD and convexity are present in the cost function. The partial equilibrium model of (Creti et al., 2015) is used as a starting point. For the case of linear LBD the deployment trajectory can be analytically obtained. This allows to conclude that a high learning induces an earlier switch towards green cars in the case of low convexity, and a later switch in the case of high convexity. This insight is used to revisit the hydrogen mobility project in Germany. A high learning lowers the corresponding deployment cost and reduces deepness and duration of the, investment ‘death valley’ (period of negative project’s cash flow). An acceleration of exogenously defined scenario for FCEV deployment, based on the industry forecast, would be beneficial to reduce the associated transition cost.
5

Capital and Operational Cost Evaluation of Selected Powertrain configurations in Heavy-duty Fuel Cell Trucks / Kapital och driftskostnadsutvärdering av utvalda drivlinakonfigurationer i tunga bränslecellstruckar

Vivek Venkatesh, Shenoy January 2021 (has links)
The automotive and heavy-duty trucking industries are heading towards research and development of alternative powertrain solutions to meet the United Nations sustainability goals and cleaner solutions to aid climate change actions. This thesis project aligns with the vision of finding greener and sustainable modes of transport in the heavy long haulage trucking industry. This project aims to find and develop a method for creating drive cycles, getting the vehicular power requirements to drive on these selected routes and finally calculating the TCO of a vehicle. The scripts for these mentioned steps are developed in MATLAB. The approach used in this work could help both the vehicle manufacturer and the vehicle operator to predict or cater to upcoming customer demand on, in our case, routes pan EU, to receive information about energy, power and vehicular configuration needed to fulfil the mission, and also, optimize the powertrain configuration in collaboration with a parallel thesis work done here at Scania, and finally calculate a somewhat simplified TCO of the vehicle.  In this work, two different driving conditions has been used; summer or winter, and two different payload conditions, as well as two types of vehicle powertrains; FCEV and BEV. Finally, a comparison regarding TCO for FCEV and BEV has been done. / Fordonsindustrin, inklusive den kommersiella lastbilsindustrin, driver utvecklingen av alternativa drivlinor för att kunna uppfylla FN:s hållbarhetsmål kring miljövänligare lösningar, nödvändiga för att stödja det globala klimatarbetet. Detta examensarbete utgår från visionen att hitta miljövänligare fordonstyper inom den kommersiella lastbilssektorn. Detta projekt siktar på att utveckla och använda metoder för att kunna ta fram relevanta körcykler, fastställa nödvändig framdrivningseffekt för att fordonen ska kunna köra på utvalda rutter, samt att beräkna total ägandekostnad (TCO) för fordonsoperatören.  Skripten för dessa nämnda steg har utvecklats i MATLAB inom projektet. Tillvägagångssättet som har använts i detta arbete kan hjälpa både fordonstillverkare och fordonsoperatörer att förutspå framtida krav. I vårt fall har information om nödvändig energimängd, effekt och komponentkonfiguration, inklusive drivlineoptimering, tagits fram för rutter inom EU, tillsammans med ett parallellt examensarbete som också utförts på Scania. Slutligen beräknades den totala ägandekostnaden (TCO) för kunden.  I detta arbete har två olika användarfall analyserats; sommar och vinter, för två olika nyttolaster, samt två typer av drivlinor; FCEV och BEV. Slutligen, har en jämförelse gjorts gällande TCO för FCEV och BEV.
6

Konzeption eines ganzheitlichen Energiemanagements für Brennstoffzellenfahrzeuge

Rathke, Philipp, von Unwerth, Thomas 25 November 2019 (has links)
Ein Brennstoffzellenfahrzeug besteht aus vielen Teilsystemen, zu denen neben der Brennstoffzelle auch Hybridbatterie, Wärmepumpe, Tanksystem, Fahrgastzelle sowie Traktionsmaschine und Leistungselektronik gehören. Jedes dieser Systeme hat bezüglich Temperaturen und Kühl- bzw. Erwärmungsbedarf, je nach Betriebspunkt, unterschiedliche Anforderungen und benötigt für den Betrieb ein Thermomanagementsystem. Im Rahmen der aktuellen Forschungen wird untersucht, ob durch die Verwendung eines aktiven Thermomanagementmoduls die Teilsysteme des Fahrzeugs derart verknüpft werden können, sodass eine Effizienzsteigerung des Gesamtsystems erreicht werden kann. Da sich je nach Betriebszustand und Umgebungsbedingungen Größe und Richtung der Wärmeströme ändern, wird mittels eines simulationsbasierten Ansatzes eine Strategie für die Regelung des Thermomanagementmoduls entwickelt. In dieser Veröffentlichung soll dargestellt werden, welche Vorüberlegungen getroffen wurden, um ein Konzept für ein ganzheitliches Energiemanagement für ein Brennstoffzellenfahrzeug zu entwickeln.
7

Methodik für die Analyse zukünftiger technologischer Potenziale von Fahrzeugantriebskonzepten

Schneider, Dimitri 12 April 2022 (has links)
Ein wichtiger Aspekt bei der Beurteilung und Gegenüberstellung von Fahrzeugantriebskonzepten sind Prognosen zu deren zukünftigen Entwicklung hinsichtlich gesellschaftlicher, ökonomischer und technischer Kriterien. Zukünftige technologische Potenziale von Fahrzeugantriebskonzepten und damit verbundene technologische Begleitaspekte nehmen hierbei eine wichtige Rolle im Rahmen der Antriebskonzipierung der frühen Konzeptphase ein. In dieser Arbeit wird eine in weiten Teilen simulationsbasierte Methodik für die Ermittlung und Analyse entsprechender Potenziale entwickelt. Die Methodik bildet dabei eine Kombination aus Expertenbefragungen und einer Metaanalyse für die Identifikation von Prognosen zu Antriebsstrangkomponenten sowie Verfahren der Modellierung und Simulation für die Ermittlung von Prognosen zu Fahrzeugantriebskonzepten. Die Praxistauglichkeit sowie der Nutzen der Methodik werden anhand von zwei exemplarischen Anwendungen präsentiert. Die erste Anwendung umfasst die Analyse eines beispielhaften PHEVs hinsichtlich der zukünftigen Potenziale im Bereich des Kraftstoffverbrauchs und der rein elektrischen Reichweite. Die zweite Analyse stellt ein exemplarisches BEV und ein FCHEV in Bezug auf die zukünftigen Potenziale hinsichtlich der Reichweite und der Antriebsstrangherstellkosten gegenüber. Darüber hinaus erfolgen in beiden Anwendungen Analysen zu Grenzpotenzialen, technologischen Ursachen, Fehlereinflüssen und weiteren technologischen Fragestellungen.:1 Einleitung 2 Forschungsumfeld, Handlungsbedarf und Vorgehensweise 3 Grundlagen, technischer Stand und Perspektiven der Fahrzeugantriebstechnologien 4 Methodisches Vorgehen und Methodikaufbau 5 Anforderungsspezifische Modellierung im Simulationsmodell 6 Prognosen zu Antriebsstrangkomponenten 7 Systematische Analyse der zukünftigen Potenziale von Antriebskonzepten 8 Anwendung und Ergebnisdiskussion 9 Zusammenfassung und Ausblick A Programmiertechnische Umsetzung B Bewertung von Antriebskonzepten C Datenbasis und Ergebnisse der Methodikanwendung / An important aspect in the assessment and comparison of vehicle powertrain concepts are forecasts with respect to the future development of these concepts regarding societal, economical as well as technological criteria. In this context, future technological potentials of vehicle powertrain concepts and related technological issues and effects play an important role, especially within the early powertrain conception phase. This work presents a mainly simulation-based methodology for the evaluation und analysis of respective technological potentials. The methodology comprises a combination of expert surveys and a meta-analysis for the identification of powertrain component forecasts and methods in the field of modelling and simulation for the evaluation of powertrain concept forecasts. Two exemplary applications are conducted to present the practicability and utility of the methodology. The first one comprises the analysis of an exemplary PHEV regarding its future potentials with respect to the fuel consumption and the purely electric range. Within the second one, an exemplary BEV and an exemplary FCHEV are compared with regard to future range and powertrain costs potentials. In addition to that, within both methodology applications, analyses with respect to technological limits, technological reasons, fault effects and further technological issues are conducted.:1 Einleitung 2 Forschungsumfeld, Handlungsbedarf und Vorgehensweise 3 Grundlagen, technischer Stand und Perspektiven der Fahrzeugantriebstechnologien 4 Methodisches Vorgehen und Methodikaufbau 5 Anforderungsspezifische Modellierung im Simulationsmodell 6 Prognosen zu Antriebsstrangkomponenten 7 Systematische Analyse der zukünftigen Potenziale von Antriebskonzepten 8 Anwendung und Ergebnisdiskussion 9 Zusammenfassung und Ausblick A Programmiertechnische Umsetzung B Bewertung von Antriebskonzepten C Datenbasis und Ergebnisse der Methodikanwendung
8

FC³ - 1st Fuel Cell Conference Chemnitz 2019 - Saubere Antriebe. Effizient Produziert.: Wissenschaftliche Beiträge und Präsentationen der ersten Brennstoffzellenkonferenz am 26. und 27. November 2019 in Chemnitz

von Unwerth, Thomas, Drossel, Welf-Guntram 25 November 2019 (has links)
Die erste Chemnitzer Brennstoffzellenkonferenz wurde vom Innovationscluster HZwo und dem Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU durchgeführt. Ausgewählte Fachbeiträge und Präsentationen werden in Form eines Tagungsbandes veröffentlicht. / The first fuel cell conference was initiated by the innovation cluster HZwo and the Fraunhofer Institute for Machine Tools and Forming Technology. Selected lectures and presentations are published in the conference proceedings.

Page generated in 0.1742 seconds