• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 19
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 188
  • 104
  • 60
  • 43
  • 41
  • 40
  • 37
  • 28
  • 26
  • 22
  • 20
  • 20
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

A Comprehensive study on Federated Learning frameworks : Assessing Performance, Scalability, and Benchmarking with Deep Learning Model

Hamsath Mohammed Khan, Riyas January 2023 (has links)
Federated Learning now a days has emerged as a promising standard for machine learning model training, which can be executed collaboratively on decentralized data sources. As the adoption of Federated Learning grows, the selection of the apt frame work for our use case has become more important. This study mainly concentrates on a comprehensive overview of three prominent Federated Learning frameworks Flower, FedN, and FedML. The performance, scalability, and utilization these frame works is assessed on the basis of an NLP use case. The study commences with an overview of Federated Learning and its significance in distributed learning scenarios. Later on, we explore into the examination of the Flower framework in-depth covering its structure, communication methods and interaction with deep learning libraries. The performance of Flower is evaluated by conducting experiments on a standard benchmark dataset. Metrics provide measurements for accuracy, speed and scalability. Tests are also conducted to assess Flower's ability to handle large-scale Federated Learning setups. The same is carried out with the other two frameworks FedN and FedML also. To gain better insight into the strengths, limitations, and suitability of Flower, FedN, and FedML for different Federated Learning scenarios, the study utilizes the above stated comparative analysis on a real time use case. The possibilities for integrating these frameworks with current machine learning workflows are discussed. Furthermore, the final results and conclusions may help researchers and practitioners to make conversant decisions regarding framework selection for their Federated Learning applications. / <p>Det finns övrigt digitalt material (t.ex. film-, bild- eller ljudfiler) eller modeller/artefakter tillhörande examensarbetet som ska skickas till arkivet.</p><p>There are other digital material (eg film, image or audio files) or models/artifacts that belongs to the thesis and need to be archived.</p>
132

Federated Learning for edge computing : Real-Time Object Detection

Memia, Ardit January 2023 (has links)
In domains where data is sensitive or private, there is a great value in methods that can learn in a distributed manner without the data ever leaving the local devices. Federated Learning (FL) has recently emerged as a promising solution to collaborative machine learning challenges while maintaining data privacy. With FL, multiple entities, whether cross-device or cross-silo, can jointly train models without compromising the locality or privacy of their data. Instead of moving data to a central storage system or cloud for model training, code is moved to the data owners’ local sites, and incremental local updates are combined into a global model. In this way FL enhances data pri-vacy and reduces the probability of eavesdropping to a certain extent. In this thesis we have utilized the means of Federated Learning into a Real-Time Object Detection (RTOB) model in order to investigate its performance and privacy awareness towards a traditional centralized ML environment. Several object detection models have been built us-ing YOLO framework and training with a custom dataset for indoor object detection. Local tests have been performed and the most opti-mal model has been chosen by evaluating training and testing metrics and afterwards using NVIDIA Jetson Nano external device to train the model and integrate into a Federated Learning environment using an open-source FL framework. Experiments has been conducted through the path in order to choose the optimal YOLO model (YOLOv8) and the best fitted FL framework to our study (FEDn).We observed a gradual enhancement in balancing the APC factors (Accuracy-Privacy-Communication) as we transitioned from basic lo-cal models to the YOLOv8 implementation within the FEDn system, both locally and on the SSC Cloud production environment. Although we encountered technical challenges deploying the YOLOv8-FEDn system on the SSC Cloud, preventing it from reaching a finalized state, our preliminary findings indicate its potential as a robust foundation for FL applications in RTOB models at the edge.
133

Experiments of Federated Learning on Raspberry Pi Boards

Sondén, Simon, Madadzade, Farhad January 2022 (has links)
In recent years, companies of all sizes have become increasingly dependent on customer user data and processing it using machine learning (ML) methods. These methods do, however, require the raw user data to be stored locally on a server or cloud service, raising privacy concerns. Hence, the purpose of this paper is to analyze a new alternative ML method, called federated learning (FL). FL allows the data to remain on each respective device while still being able to create a global model by averaging local models on each client device. The analysis in this report is based on two different types of simulations. The first is simulations in a virtual environment where a larger number of devices can be included, while the second is simulations on a physical testbed of Raspberry Pi (RPI) single-board computers. Different parameters are changed and altered to find the optimal performance, accuracy, and loss of computations in each case. The results of all simulations show that fewer clients and more training epochs increase the accuracy when using independent and identically distributed (IID) data. However, when using non-IID data, the accuracy is not dependent on the number of epochs, and it becomes chaotic when decreasing the number of clients which are sampled each round. Furthermore, the tests on the RPIs show results which agree with the virtual simulation. / På den senaste tiden har företag blivit allt mer beroende av ku rs användardata och har börjat använda maskininlärningsmodeller för att processera datan. För att skapa dessa modeller behövs att användardata lagras lokalt på en server eller en molntjänst, vilket kan leda till integritetsproblematik. Syftet med denna rapport är därför att analysera en ny alternativ metod, vid namn ”federated learning” (FL). Denna metod möjliggör skapandet av en global modell samtidigt som användardata förblir kvar på varje klients enhet. Detta görs genom att den globala modellen bestäms genom att beräkna medelvärdet av samtliga enheters lokala modeller. Analysen av metoden görs baserat på två olika typer av simuleringar. Den första görs i en virtuell miljö för att kunna inkluderastörre mängder klientenheter medan den andra typen görs på en fysisk testbädd som består av enkortsdatorerna Raspberry Pi (RPI). Olika parametrar justeras och ändras för att finna modellens optimala prestanda och nogrannhet. Resultaten av simuleringarna visar att färre klienter och flera träningsepoker ökar noggrannheten när oberoende och likafördelad (på engelska förkortat till IID) data används. Däremot påvisas att noggrannheten inte är beroende av antalet epoker när icke-IID data nyttjas. Noggrannheten blir däremot kaotisk när antalet klienter som används för att träna på varje runda minskas. Utöver observeras det även att testresultaten från RPI enheterna stämmer överens med resultatet från simuleringarna. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
134

Heterogeneous IoT Network Architecture Design for Age of Information Minimization

Xia, Xiaohao 01 February 2023 (has links) (PDF)
Timely data collection and execution in heterogeneous Internet of Things (IoT) networks in which different protocols and spectrum bands coexist such as WiFi, RFID, Zigbee, and LoRa, requires further investigation. This thesis studies the problem of age-of-information minimization in heterogeneous IoT networks consisting of heterogeneous IoT devices, an intermediate layer of multi-protocol mobile gateways (M-MGs) that collects and relays data from IoT objects and performs computing tasks, and heterogeneous access points (APs). A federated matching framework is presented to model the collaboration between different service providers (SPs) to deploy and share M-MGs and minimize the average weighted sum of the age-of-information and energy consumption. Further, we develop a two-level multi-protocol multi-agent actor-critic (MP-MAAC) to solve the optimization problem, where M-MGs and SPs can learn collaborative strategies through their own observations. The M-MGs' strategies include selecting IoT objects for data collection, execution, relaying, and/or offloading to SPs’ access points while SPs decide on spectrum allocation. Finally, to improve the convergence of the learning process we incorporate federated learning into the multi-agent collaborative framework. The numerical results show that our Fed-Match algorithm reduces the AoI by factor four, collects twice more packets than existing approaches, reduces the penalty by factor five when enabling relaying, and establishes design principles for the stability of the training process.
135

Efficient Algorithms for Data Mining with Federated Databases

Young, Barrington R. St. A. 03 July 2007 (has links)
No description available.
136

Linked Open Data Alignment & Querying

Jain, Prateek 27 August 2012 (has links)
No description available.
137

Network and Middleware Security for Enterprise Network Monitoring

Gopalakrishnan, Aravind 19 July 2012 (has links)
No description available.
138

Machine Learning for Water Monitoring Systems

Asaad, Robirt, Sanchez Ribe, Carlos January 2021 (has links)
Water monitoring is an essential process that managesthe well-being of freshwater ecosystems. However, it isgenerally an inefficient process as most data collection is donemanually. By combining wireless sensor technology and machinelearning techniques, projects such as iWater aim to modernizecurrent methods. The purpose of the iWater project is to developa network of smart sensors capable of collecting and analyzingwater quality-related data in real time.To contribute to this goal, a comparative study between theperformance of a centralized machine learning algorithm thatis currently used, and a distributed model based on a federatedlearning algorithm was done. The data used for training andtesting both models was collected by a wireless sensor developedby the iWater project. The centralized algorithm was used asthe basis for the developed distributed model. Due to lack ofsensors, the distributed model was simulated by down-samplingand dividing the sensor data into six data sets representing anindividual sensor. The results are similar for both models andthe developed algorithm reaches an accuracy of 98.41 %. / Vattenövervakning är en nödvändig processför att få inblick i sötvattensekosystems välmående. Dessvärreär det en kostsam och tidskrävande process då insamling avdata vanligen görs manuellt. Genom att kombinera trådlössensorteknologi och maskininlärnings algoritmer strävar projektsom iWater mot att modernisera befintliga metoder.Syftet med iWater är att skapa ett nätverk av smarta sensorersom kan samla in och analysera vattenkvalitetsrelaterade datai realtid. För att bidra till projektmålet görs en jämförandestudie mellan den prediktiva noggrannheten hos en centraliseradmaskininlärningsalgoritm, som i nuläget används, och endistribuerad modell baserad på federerat lärande. Data somanvänds för träning och testning av båda modellerna samladesin genom en trådlös sensor utvecklad inom iWater-projektet.Den centraliserade algoritmen användes som grund för denutvecklade distribuerade modellen. På grund av brist på sensorersimulerades den distribuerade modellen genom nedprovtagningoch uppdelning av data i sex datamängder som representerarenskilda sensorer. Resultaten för båda modellerna var liknandeoch den utvecklade algoritmen har en noggrannhet på 98.41 % / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
139

Water Anomaly Detection Using Federated Machine Learning

Wallén, Melker, Böckin, Mauricio January 2021 (has links)
With the rapid increase of Internet of Things-devices(IoT), demand for new machine learning algorithms and modelshas risen. The focus of this project is implementing a federatedlearning (FL) algorithm to detect anomalies in measurementsmade by a water monitoring IoT-sensor. The FL algorithm trainsacross a collection of decentralized IoT-devices, each using thelocal data acquired from the specific sensor. The local machinelearning models are then uploaded to a mutual server andaggregated into a global model. The global model is sent back tothe sensors and is used as a template when training starts againlocally. In this project, we only have had access to one physicalsensor. This has forced us to virtually simulate sensors. Thesimulation was done by splitting the data gathered by the onlyexisting sensor. To deal with the long, sequential data gatheredby the sensor, a long short-term memory (LSTM) network wasused. This is a special type of artificial neural network (ANN)capable of learning long-term dependencies. After analyzing theobtained results it became clear that FL has the potential toproduce good results, provided that more physical sensors aredeployed. / I samband med den snabba ökningen avInternet of Things-enheter (IoT) har efterfrågan på nya algoritmeroch modeller för maskininlärning ökat. Detta projektfokuserar på att implementera en federated learning (FL) algoritmför att detektera avvikelser i mätdata från en sensorsom övervakar vattenkvaliteten. FL algoritmen tränar en samlingdecentraliserade IoT-enheter, var och en med hjälp av lokaldata från sensorn i fråga. De lokala maskininlärningsmodellernaladdas upp till en gemensam server och sammanställs till englobal modell. Den globala modellen skickas sedan tillbaka tillsensorerna och används som mall när den lokala träningen börjarigen. I det här projektet hade vi endast tillgång till en fysisksensor. Vi har därför varit tvungna att simulera sensorer. Dettagjordes genom att dela upp datamängden som samlats in frånden fysiska sensorn. För att hantera den långa sekventiella dataanvänds ett long short-term memory (LSTM) nätverk. Detta ären speciell typ av artificiellt neuronnät (ANN) som är kapabeltatt minnas mönster under en längre tid. Efter att ha analyseratresultaten blev det tydligt att FL har potentialen att produceragoda resultat, givet att fler fysiska sensorer implementeras. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
140

Unlearn with Your Contribution : A Machine Unlearning Framework in Federated Learning / Avlär dig med ditt bidrag : Ett ramverk för maskinavlärning inom federerad inlärning

Wang, Yixiong January 2023 (has links)
Recent years have witnessed remarkable advancements in machine learning, but with these advances come concerns about data privacy. Machine learning inherently involves learning functions from data, and this process can potentially lead to information leakage through various attacks on the learned model. Additionally, the presence of malicious actors who may poison input data to manipulate the model has become a growing concern. Consequently, the ability to unlearn specific data samples on demand has become critically important. Federated Learning (FL) has emerged as a powerful approach to address these challenges. In FL, multiple participants or clients collaborate to train a single global machine learning model without sharing their training data. However, the issue of machine unlearning is particularly pertinent in FL, especially in scenarios where clients are not fully trustworthy. This paper delves into the investigation of the efficacy of solving machine unlearning problems within the FL framework. The central research question this work tackles is: How can we effectively unlearn the entire dataset from one or multiple clients once an FL training is completed, while maintaining privacy and without access to the data? To address this challenge, we introduce the concept of ”contribution,” which quantifies how much each client contributes to the training of the global FL model. In our implementation, we employ an Encoder-Decoder model on the server’s end to disentangle these contributions as the FL process progresses. Notably, our approach is unique in that there is no existing work that utilizes a similar concept nor similar models. Our findings, supported by extensive experiments on datasets MNIST and FashionMNIST, demonstrate that our proposed approach successfully solves the unlearning task in FL. Remarkably, it achieves results comparable to retraining from scratch without requiring the participation of the specific client whose data needs to be unlearned. Moreover, additional ablation studies indicate the sensitivity of the proposed model to specific structural hyperparameters. / Här har de senaste åren bevittnat enastående framsteg inom maskininlärning, men med dessa framsteg kommer bekymmer om dataskydd. Maskininlärning innebär i grunden att lära sig funktioner från data, och denna process kan potentiellt leda till läckage av information genom olika attacker mot den inlärda modellen. Dessutom har närvaron av illvilliga aktörer som kan förgifta indata för att manipulera modellen blivit en växande oro. Följaktligen har förmågan att avlära specifika datasatser på begäran blivit av avgörande betydelse. Federerad inlärning (FL) har framträtt som en kraftfull metod för att ta itu med dessa utmaningar. I FL samarbetar flera deltagare eller klienter för att träna en enda global maskininlärningsmodell utan att dela sina träningsdata. Emellertid är problemet med maskinavlärande särskilt relevant inom FL, särskilt i situationer där klienterna inte är fullt pålitliga. Denna artikel fördjupar sig i undersökningen av effektiviteten av att lösa problem med maskinavlärande inom FL-ramverket. Den centrala forskningsfråga som detta arbete behandlar är: Hur kan vi effektivt avlära hela datasamlingen från en eller flera klienter när FL-utbildningen är klar, samtidigt som vi bevarar integritet och inte har tillgång till datan? För att ta itu med denna utmaning introducerar vi begreppet ”bidrag,” som kvantifierar hur mycket varje klient bidrar till träningen av den globala FLmodellen. I vår implementering använder vi en Encoder-Decoder-modell på serverns sida för att reda ut dessa bidrag när FL-processen fortskrider. Det är värt att notera att vår metod är unik eftersom det inte finns något befintligt arbete som använder ett liknande koncept eller liknande modeller. Våra resultat, som stöds av omfattande experiment på dataseten MNIST och FashionMNIST, visar att vår föreslagna metod framgångsrikt löser avlärandeuppgiften i FL. Anmärkningsvärt uppnår den resultat som är jämförbara med att träna om från grunden utan att kräva deltagandet av den specifika klient vars data behöver avläras. Dessutom indikerar ytterligare avläggningsstudier känsligheten hos den föreslagna modellen för specifika strukturella hyperparametrar.

Page generated in 0.0259 seconds