541 |
Removal of organic and inorganic nutrients in a constructed rhizofiltration system using macrophytes and microbial biofilmsMthembu, Mathews Simon January 2016 (has links)
Submitted in complete fulfillment for the degree of Doctor of Philosophy (Biotechnology) in the Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa, 2016. / Many households in developing countries are still without proper sanitation systems. The problems are even more prevalent in rural communities where there are no septic systems in place for the treatment of wastewater. This has resulted in the urgent need for the development and implementation of innovative wastewater treatment systems that are inexpensive, environmental friendly and are able to reduce contaminants to levels that pose no harm to the communities. Constructed rhizofiltration systems have been explored for this purpose. They have been used for many decades in many countries with varying degrees of success at the primary, secondary and tertiary levels of wastewater treatment. Poor optimization of this technology has been due to limited information available about the roles played by the whole system as well as by each component involved in the treatment technology. The current work elucidates the role played by macrophytes and microbial biofilms in the removal of nutrients in the rhizofiltration system. Factors affecting waste removal as well as environmental friendliness of the system were also investigated.
The rhizofiltration system was constructed in Durban and was divided into planted (planted with Phragmites australis and Kyllinga nemoralis) and unplanted (reference) section. Dissolved oxygen (DO), pH, water temperature, total dissolved solids (TDS), electrical conductivity (EC) and salinity were monitored. The removal efficiency of nutrients was measured using spectrophotometric methods by measuring the concentration of ammonia, nitrate, nitrite, phosphate and orthophosphate in the wastewater pre- and post-treatment. The total organic carbon, chemical oxygen demand (COD), total Kehldjahl nitrogen, biological oxygen demand (BOD), ammonia, nitrate and the flow rate of wastewater into the system from the settling tank were used for the estimation of carbon dioxide, methane and nitrous oxide emitted from the rhizofilter using the 2009 EPA formulae.
Both the planted and reference sections of the system removed nutrients with varying efficiencies. The reduction of nutrients in the rhizofilter was found to be seasonal, with most nutrients removed during the warm seasons. The system also retained more nutrients when wastewater containing low levels of nutrients was used. The unpaired t-test was used to determine the differences between nutrient removals between planted and reference sections. Higher reduction efficiencies of nutrients were obtained in the planted section. Up to 65% nitrite and 99% nitrate were removed while up to 86% total phosphorus was removed in a form of orthophosphate (86%). Removal of total nitrogen was shown to increase under high temperature conditions, while the same conditions decreased the total phosphorus removal. High temperatures also increased the performance of the system. The reduction of nutrients in the system corresponded to reduction of the chemical oxygen demand which also positively correlated to the dissolved oxygen concentration. Considering the discharge limits for all nutrients, the discharges in the effluent of the planted section were within the allowable limits as per South Africa’s Department of Water affairs and Forestry in 2012 but not in 2013. The results obtained in 2013 were due to increased nutrient loading introduced into the system.
Diverse microbial communities occurred in the treatment system, with more diversity in the planted section. These organisms were supported by macrophytes in the planted section, and were responsible for nitrogen and phosphorus transformation. This explains why total nitrogen and phosphorus reduction was higher in the planted compared to the reference section.
Both the planted and the reference sections of the rhizofiltration system produced the greenhouse gases. When the two sections were compared, the planted section produced more gases. Gases emitted by both sections were lower when compared to emission from sludge treatment reed beds and other conventional systems of wastewater treatments. These findings indicated that constructed rhizofiltration is a cleaner form of waste treatment, producing significantly less greenhouse gases and affecting less of a climate change. Findings of this work have revealed that rhizofiltration technology can be used as a low-cost alternative technology for the treatment of wastewater, using the combination of macrophytes and microbial biofilms. Macrophytes accumulated nitrogen and phosphorus as well as supported diverse microorganisms that metabolized and reduced nutrients in the rhizofiltration unit. / D
|
542 |
Kvalitet vazduha pod pritiskom u funkciji održive proizvodnje / Compressed air quality as a function of sustainable productionMilenković Ivana 10 October 2014 (has links)
<p>U radu se proučava kvalitet vazduha pod pritiskom iz aspekta održive proizvodnje. Zahtevani kvalitet vazduha postiže se primenom filtera<br />i sušača. Filteri vazduha izazivaju pad pritiska, koji ako se smanji,<br />smanjuje se i ukupna količina proizvedenog vazduha pod pritiskom, čime<br />se povećava energetska efikasnost. Utvrđuje se povezanost primene<br />različitih filtera i pada pritiska, uz poštovanje kvaliteta vazduha.<br />Osim toga, analiziran je kondenzat, koji se pri filtraciji javlja u<br />sistemu, i kreirane su odgovarajuće preporuke za njegovo odlaganje, jer<br />se on svrstava u opasan otpad zbog prisustva ulja.</p> / <p>This paper examines the quality of compressed air from the aspect of<br />sustainable production. The required air quality is achieved by using filters<br />and dryers. Air filters generate the pressure drop, which, if reduced, reduces<br />the total volume of produced compressed air, which lead to increase in<br />energy efficiency. Connections between the application of different filters and<br />pressure drops with respect to quality are explored. In addition, the<br />condensate from the compressed air system is analysed, and appropriate<br />recommendations for its disposal are created because it is classified as<br />hazardous waste due to the presence of oil.</p>
|
543 |
A Quantitative Radioimmunoassay for Phosphoglucose Isomerase and Its Utilization in Detecting Cross-Reactive Material in Variant Forms of Phosphoglucose Isomerase and in Human TissuesPurdy, Kimberly L. 05 1900 (has links)
A method for purification and radiolabelling phosphoglucose isomerase was devised in order to develop a sensitive quantitative radioimmunoassay for the detection of the enzyme irrespective of its catalytic activity. For four genetic variants of PGI no difference in the molecular specific activity was observed. In one variant (PGI-Denton), liver and heart tissue extracts, and in mature erythrocytes (as compared to normal erythrocytes), a decreased molecular specific activity was observed which initially may imply that these samples contain cross-reactive material which is not catalytically active.
|
544 |
Microbiological Studies of Biological Activated Carbon Filters Used in Water TreatmentChang, Eichin 12 1900 (has links)
A collaborative pilot study of the microflora on biological activated charcoal (BAC) filters employed in the tertiary treatment of drinking water revealed the principle bacterial genera to be Pseudomonas, Alcaligenes, Achromobacter, Bacillus, Micrococcus, Corynebacterium, Chromobacterium, Microcyclus and Paracoccus. The microbial population of the filters paralleled seasonal carbon dioxide production. Of particular interest were the effects of the BAC miroorganisms upon precursors of trihalomethanes (THMs). Mixed populations of BAC microorganisms were cultivated for 50 days in a mineral salts-humic acid medium. It was concluded that (1) the BAC microflora enhances the absorptive capacity of the filters; (2) chemico-physical and biological processes operate in concert to lower the concentration of precursors of THMs; and (3) few bacterial pathogens establish themselves on the filters.
|
545 |
MICRO- AND MACRO-SCALE MODELING OF FILTER AGING: EFFECTS OF PARTICLE POLY-DISPERSITY AND FIBER CROSS-SECTIONAL SHAPESaleh, Ahmed M. 01 January 2015 (has links)
The goal of this study is to further advance the state of the art in developing self-sufficient methods to predict the performance of an aerosol filter. The simulation methods developed in this study are based on first principles and consequently, they do not rely on empirical correction factors. These simulation methods can be used to predict the instantaneous collection efficiency and pressure drop of a filter under dust-loading conditions. In the current study, 3-D micro- and macroscale CFD models are developed to simulate the service life of flat-sheet and pleated filters. These CFD micro- and macroscale models are also used to quantify the effects of a fiber’s cross-sectional shape on the performance of the resulting filter. As fiber manufacturing methods are rapidly advancing, these fibers are becoming more accessible. The filtration performance of trilobal fibers is compared with their circular counterparts under dust-loading conditions. Our results show that trilobal fibers do not outperform circular ones except in very limited conditions, revealing no advantage over circular fibers.
In addition, a fast but approximate 2-D model is developed to predict the filtration performance of flat and circular pleated filters. The predictions of the model are compared with predictions from the more sophisticated CFD models, as well as with experimental work in the literature. Our 2-D model developed in this study is aimed at providing the aerosol filtration industry with a fast but fairly accurate method of designing pleated filters. With a CPU-time of practically zero, the developed model allows one to conduct a broad parameter study, altering the parameters that affect the filtration performance of pleated filters. Using this model, predictive correlations for dust-loaded pleated filters are presented. These correlations allow one to estimate the instantaneous pressure drop and collection efficiency of pleated filters effectively.
|
546 |
The Effect of Chlorhexidine Gluconate as an Endodontic Irrigant on the Apical Seal: Long-term ResultsFerguson, David B. 01 January 2003 (has links)
The purpose of this study was to determine whether chlorhexidine gluconate (0.12%), used as an endodontic irrigating solution would affect the apical seal of three root canal cements. One hundred extracted human single-canal teeth were divided into 9 experimental groups of 10 teeth each, in addition to a positive and negative control group of 5 teeth each. The teeth were decoronated at the level of the cementoenamel junction, accessed, instrumented to a Master Apical File #50, irrigated with either sterile saline, 5.25% NaOCl or 0.12% chlorhexidine gluconate, and dried using paper points. Obturation was accomplished using lateral condensation and one of three endodontic sealers: Roth's 811, AH26, or Sealapex. Post-obturation apical leakage was measured at 270- and 360-day observation periods using the fluid filtration method. Using the mixed-model repeated-measures ANOVA test with Tukey's HSD multiple comparison procedure, the results showed the saline-Sealapex combination had significantly more leakage (p<0.05) than either the Peridex-Sealapex or saline-Roth's combinations at 270 days. No other significant differences were noted between any sealer-irrigant combination at 270 days. The saline-Sealapex combination had significantly more leakage than the saline-Roth's combination at 360 days. No other significant differences were noted at 360 days. Under the conditions of this study, chlorhexidine gluconate irrigant did not adversely affect the apical seal of three root canal cements at 270 and 360 days.
|
547 |
Robustní filtrování / Robust filteringMach, Tibor January 2013 (has links)
This work is focused on the problem of filtering of random processes and on the construction of a stochastic integral with a measureable parameter. This integral is used to devise filtration equations for a random process which is based on a model motivated by a financial application. The method used to devise them and the equations themselves are then compared with the so called optional filtering from the book Markov processes and Martingales by Rogers and Williams, while the definition of the optional projection is extended so it is possible to correct a~mistake in a proposition in the aforementioned book. Powered by TCPDF (www.tcpdf.org)
|
548 |
Hydrogeologie Skorkovského a Sojovického jímacího řadu na základě nových údajů z vrtů / Hydrogeology of Skorkov and Sojovice waterworks based on data from new water wellsRybářová, Magdalena January 2015 (has links)
The Riverbank Filtration (RBF) water supply system Karany has been affected by increasing NO3- concentrations during recent decades. This thesis deals with flow and chemical composition of groundwater in Skorkov and Sojovice RBF systems, which are the most problematic ones according to their quality in long term. Twelve new groundwater wells (V1- V12) were drilled in study area in 2013. Data derived from the wells were used to improve the conceptual hdrogeological model of the area and I tried to specify information about the origin of nitrate pollution. The Groundwater level logging showed hydraulic connection between the river and the wells situated up to 130 m faraway from the river (V1, V2 andV10), which were also demonstrated by the short- term temperature fluctuations caused by fast penetration of surface water from The Jizera River during higher flow rate to wells. I compiled geological sections which show the geometry of The Quaternary fluvial deposits and groundwater level. The chemical analysis of groundwater showed that it is not possible to differentiate groundwater from the shallow part of The Cretaceous aquifer from the aquifer of fluvial deposits by major chemical components. The result of infiltration experiments showed higher permeability in the environment with grass cover (kv=...
|
549 |
Synthesis, characterization and assessment of nanocomposites-based ultrafiltration membrane with reduced fouling and better wastewater disinfection23 April 2015 (has links)
Ph.D. (Chemistry) / This study addressed the incorporation of nanotechnology-based materials, either through incorporating nanomaterials or by introducing nanostructures onto the membrane matrix, to form nano-enabled polymeric membranes with high specific flux and better anti-fouling profile. The aim of the study was to integrate nanotechnology and membrane science in order to improve the performance of water filtration membranes by alleviating some of the specific shortcomings of water treatment membranes......
|
550 |
Passive treatment of acid mine drainage through permeable concrete and organic filtrationZaal, Steven Michael January 2016 (has links)
A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering, 2016 / The aim of this research was to reduce heavy metal and sulfate content of acid mine drainage
(AMD) through the methods of passive filtration by combining permeable concrete and
organic materials. This was to achieve a low cost, yet effective temporary treatment method
for rural/poor communities who are affected by AMD. The acids are filtered through layers of
alternating pervious concrete and biological composting layers. The concrete layers target
removal of heavy metals such as iron, manganese, potassium, and magnesium, etc. through
precipitation as well as reduce sulfate content to a small degree along with total dissolved
solids. The concrete layers also aid in raising the pH of the AMD to more acceptable levels.
The biological layers achieve sulfate remediation through the metabolism of sulfatereducing-
bacteria (SRB). This process however required time and the organic layers were thus
thicker and less permeable than the concrete layers in order to allow seepage to take place
at a reduced rate. A wide variation of composting layers were tested, including cow manure,
chicken manure, sawdust, straw, zoo manure, and leaf compost to find an optimum mix of
materials which allows for the greatest sulfate reduction through sulfate reducing bacteria in
the shortest possible time. Short as well as Long-term testing of rigs was undertaken to
establish effectiveness, limitations and lifespan of the filtration systems. AMD from a mine in
the Mpumalanga coal fields with exceptionally high sulfate content was used to test
effectiveness of the organic materials over a short period of time. With long term testing
conducted with a synthetic AMD, due to limited supply from the mine. The short term testing
yielded removal of sulfates in the order of 56% when using kraal manure as the biological
reagent mixed with sawdust for added organic carbon. The mix percentages by volume were
80%Sawdust to 20%manure and this setup was able to achieve the 56% removal of sulfates
within 14 days. The filter also successfully raised the pH to 8 while removing a significant
portion of heavy metals. The long term tests showed complete (100%) remediation of sulfates
after a period of approximately sixty days. The tests are continuing to determine their finite
lifespan and limitations. The results show promise for using the technology as a low cost,
temporary measure to protect locally impacted groundwater, especially for isolated and/or
rural communities while a permanent long term solution is sought.
|
Page generated in 0.1969 seconds