• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 471
  • 182
  • 51
  • 8
  • 3
  • 3
  • 1
  • Tagged with
  • 707
  • 325
  • 247
  • 221
  • 177
  • 116
  • 100
  • 100
  • 85
  • 82
  • 78
  • 74
  • 72
  • 72
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Modélisation des problèmes bi-fluides par la méthode des lignes de niveau et l'adaptation du maillage : Application à l'optimisation des formes / Modeling the problem two-fluid flows by the level set method and mesh adaptation : Application to the shape optimization

Tran, Thi Thanh Mai 07 January 2015 (has links)
La première préoccupation de cette thèse est le problème de deux fluides ou un fluide à deux phases, c’est-à-dire que nous nous sommes intéressés à la simulation d’écoulements impliquant deux ou plusieurs fluides visqueux incompressibles immiscibles de propriétés mécaniques et rhéologiques différentes. Dans ce contexte, nous avons considéré que l’interface mobile entre les deux fluides est représentée par la ligne de niveau zéro d’une fonction ligne de niveau et régie par l’équation d’advection, où le champ advectant est la solution des équations de Navier-Stokes. La plupart des méthodes de capture d’interface utilisent une grille cartésienne fixe au cours de la simulation. Contrairement à ces approches, la nôtre est fortement basée sur l’adaptation de maillage, notamment au voisinage de l’interface. Cette adaptation de maillage permet une représentation précise de l’interface, à l’aide de ses propriétés géométriques, avec un nombre de degrés de liberté minimal.La résolution d'un problème à deux fluides est résumée par les étapes suivantes:- Résoudre les équations de Navier-Stokes par la méthode de Lagrange-Galerkin d’ordre 1;- Traitement géométrique la tension de surface se basant sur la discrétisation explicite de l'interface dans le domaine de calcul;- Résoudre l'équation d’advection par la méthode des caractéristiques;- Les techniques de l'adaptation de maillage.On propose ici un schéma entre l’advection de l’interface, la résolution des équations de Navier-Stokes et l’adaptation de maillage. Certains résultats des exemples classiques pour les deux problèmes de monofluide et bifluide comme la cavité entrainée, la rémontée d’une bulle, la coalescence de deux bulles et les instabilités Rayleigh-Taylor sont étudiés en deux et trois dimensions.La deuxième partie de cette thèse est liée à l'optimisation des formes en mécanique des fluides. Nous construisons un schéma numérique en utilisant la méthode des lignes de niveau et l’adaptation de maillage dans le contexte des systèmes de Stokes. Le calcul de la sensibilité de la fonction objective est liée à la méthode de variation des limites d’Hadamard et les dérivées des formes sont calculées par la méthode de Céa. Un exemple numérique avec la fonction objective de la dissipation d'énergie est présenté pour évaluer l'efficacité et la fiabilité du schéma proposé. / The first concern of this thesis is the problem of two fluids flow or two-phase flow, i.e weare interested in the simulation of the evolution of an interface (or a free surface) between twoimmiscible viscous fluids or two phases of a fluid. We propose a general scheme for solving two fluids flow or two-phase flow which takes advantage of the flexibility of the level set method for capturing evolution of the interfaces, including topological changes. Unlike similar approaches that solve the flow problem and the transport equation related to the evolution of the interface on Cartesian grids, our approach relies on an adaptive unstructured mesh to carry out these computations and enjoys an exact and accurate description of the interface. The explicit representation of the manifold separating the two fluids will be extracted to compute approximately the surface tension as well as some algebraic quantities like the normal vector and the curvature at the interface.In a nutshell, the resolution of a two-fluid problem is summarized by the steps involves thefollowing ingredients:– solving incompressible Navier-Stokes equations by the first order Lagrange-Galerkin method;– geometrical treatment to evaluate the surface tension basing on the explicit discretisation of the interface;– solving the level set advection by method of characteristics; – the techniques of mesh adaptation.It is obvious that no numerical method is completely exact in solving the PDE problemat hand, hence, we need a discretized computational domain. However, the accuracy of numericalsolutions or the mass loss/gain can generally be improved with mesh refinement. The question thatarises is related to where and how to refine the mesh. At each time, our mesh adaptation producesthe adapted mesh based on the geometric properties of the interface and the physical properties ofthe fluid, simply speaking, only one adapted mesh at each time step to assume both the resolutionof Navier-Stokes and the advection equations. It answers to the need for an accurate representationof the interface and an accurate approximation of the velocity of fluids with a minimal number ofelements, then decreasing the amount of computational time. Some results of the classical examples for both problems of monofluid and bifluid flows as : lid-driven cavity, rising bubble, coalescence of two bubbles, and Rayleigh-Taylor instability are investigated in two and three dimensions.The second part of this thesis is related to shape optimization in fluid mechanics. We construct a numerical scheme using level set method and mesh adaptation in the context of Stokes systems. The computation of the sensitivity of objective function is related to the Hadamard’s boundary variation method and the shape derivatives is computed by Céa’s formal method. A numerical example with theobjective function of energy dissipation is presented to assess the efficiency and the reliability of theproposed scheme.
502

Coupling schemes and unfitted mesh methods for fluid-structure interaction / Schémas de couplage et méthodes de maillage non compatibles pour l'interaction fluide-structure

Landajuela Larma, Mikel 29 March 2016 (has links)
Cette thèse est dédiée à la simulation numérique des systèmes mécaniques impliquant l'interaction entre une structure mince déformable et un fluide incompressible interne ou qui l'entoure.Dans la première partie, nous introduisons deux nouvelles classes de schémas de couplage explicites en utilisant des maillages compatibles. Les méthodes proposées combinent une certaine consistance Robin dans le système avec (i) un schéma à pas fractionnaire pour le fluide ou (ii) une discrétisation temporelle d'ordre deux pour le fluide et le solide. Les propriétés de stabilité des méthodes sont analysées dans un cadre linéaire représentatif. Cette partie inclut aussi une étude numérique exhaustive dans laquelle plusieurs schémas de couplage (dont certains proposés ici) sont comparés et validés avec des résultats expérimentaux. Dans la seconde partie, nous considérons des maillages non compatibles. La discrétisation spatiale est basée, dans ce cas là, sur des variantes de la méthode de Nitsche avec éléments coupés. Nous présentons deux nouveaux types de schémas de découplage qui exploitent la susmentionée condition de Robin en utilisant des maillages incompatibles. Le caractère semi-implicite ou explicite du couplage en temps dépend de l'ordre dans lequel les discrétisations spatiales et temporelles sont effectuées. Dans le cas d'un couplage avec des structures immergées, la vitesse et la pression discrètes permettent des discontinuités faibles et fortes à travers l'interface, respectivement. Des estimations de stabilité et d'erreur sont fournies dans un cadre linéaire. Une série de tests numériques illustre la performance des différentes méthodes proposées. / This thesis is devoted to the numerical approximation of mechanical systems involving the interaction of a deformable thin-walled structure with an internal or surrounding incompressible fluid flow. In the first part, we introduce two new classes of explicit coupling schemes using fitted meshes. The methods proposed combine a certain Robin-consistency in the system with (i) a projection-based time-marching in the fluid or (ii) second-order time-stepping in both the fluid and the solid. The stability properties of the methods are analyzed within representative linear settings. This part includes also a comprehensive numerical study in which state-of-the-art coupling schemes (including some of the methods proposed herein) are compared and validated against the results of an experimental benchmark. In the second part, we consider unfitted mesh formulations. The spatial discretization in this case is based on variants of Nitsche’s method with cut elements. We present two new classes of splitting schemes which exploit the aforementioned interface Robin-consistency in the unfitted framework. The semi-implicit or explicit nature of the splitting in time is dictated by the order in which the spatial and time discretizations are performed. In the case of the coupling with immersed structures, weak and strong discontinuities across the interface are allowed for the velocity and pressure, respectively. Stability and error estimates are provided within a linear setting. A series of numerical tests illustrates the performance of the different methods proposed.
503

Etudes mathématiques de fluides à frontières libres en dynamique incompressible / Mathematical study of free surface flows in incompressible dynamics

Kazerani, Dena 29 November 2016 (has links)
Cette thèse est consacrée à l’étude théorique ainsi qu’au traitement numérique de fluides incompressibles à surface libre. La première partie concerne un système d’équations appelé le système de Green–Naghdi. Comme le système de Saint-Venant, il s’agit d’une approximation d’eaux peu-profondes du problème de Zakharov. La différence est que le système de Green–Naghdi est d’un degré plus élevé en ordre d’approximation. C’est pourquoi il contient tous les termes du système de Saint-Venant plus de termes d’ordre trois non-linéairement dispersives. Autrement dit, le système de Green–Naghdi peut être vu comme une perturbation dispersive du système de Saint-Venant. Ce dernier système étant hyperbolique, il entre dans le cadre classique développé pour des systèmes hyperboliques. En particulier, il est entropique (au sense de Lax) et symétrique. On peut donc lui appliquer les résultats d’existence et d’unicité bien connus pour des systèmes hyperboliques. Dans la première partie de ce travail, on généralise la notion de symétrie à une classe plus générale de systèmes contenant le système de Green–Naghdi. Ceci nous permet de symétriser les équations de Green–Naghdi et d’utiliser la symétrie obtenue pour déduire un résultat d’existence globale après avoir ajouté un terme dissipative d’ordre 2 au système. Ceci est fait en adaptant l’approche utilisée dans la littérature pour des systèmes hyperboliques. La deuxième partie de ce travail concerne le traitement numérique des équations de Navier–Stokes à surface libre avec un terme de tension de surface. Ici, la surface libre est modélisée en utilisant la formulation des lignes de niveaux. C’est pourquoi la condition cinématique (condition de l’évolution de surface libre) s’écrit sous la forme d’une équation d’advection satisfaite par la fonction de ligne de niveaux. Cette équation est résolue sur une domaine de calcul contenant strictement le domaine de fluide, sur de petits sous-intervalles du temps. Chaque itération de l’algorithme global correspond donc à l’advection du domaine du fluide sur le sous-intervalle du temps associé et ensuite de résoudre le système de Navier–Stokes discrétisé en temps sur le domaine du fluide. Cette discrétisation en temps est faite par la méthode des caractéristiques. L’outil clé qui nous permet de résoudre ce système uniquement sur le domaine du fluide est l’adaptation de maillage anisotrope. Plus précisément, à chaque itération le maillage est adapté au domaine du fluide tel que l’erreur d’approximation et l’erreur géométrique soient raisonnablement petites au voisinage du domaine du fluide. La résolution du problème discrétisé en temps sur le domaine du fluide est faite par l’algorithme d’Uzawa utilisé dans la cadre de la méthode des éléments finis. Par ailleurs, la condition de glissement de Navier est traité ici en ajoutant un terme de pénalisation à la formulation variationnelle associée. / This thesis is about theoretical study and numerical treatment of some problems raised in incompressible free-surface fluid dynamics. The first part concerns a model called the Green–Naghdi (GN) equations. Similarly to the non linear shallow water system (called also Saint-Venant system), the Green–Naghdi equations is a shallow water approximation of water waves problem. Indeed, GN equation is one order higher in approximation compared to Saint-Venant system. For this reason, it contains all the terms of Saint-Venant system in addition to some non linear third order dispersive terms. In other words, the GN equations is a dispersive perturbation of the Saint-Venant system. The latter system is hyperbolic and fits the general framework developed in the literature for hyperbolic systems. Particularly, it is entropic (in the sense of Lax) and symmertizable. Therefore, we can apply the well-posedness results known for symmetric hyperbolic system. During the first part of this work, we generalize the notion of symmetry to a more general type of equations including the GN system. This lets us to symmetrize the GN equation. Then, we use the suggested symmetric structure to obtain a global existence result for the system with a second order dissipative term by adapting the approach classically used for hyperbolic systems. The second part of this thesis concerns the numerical treatment of the free surface incompressible Navier–Stokes equation with surface tension. We use the level set formulation to represent the fluid free-surface. Thanks to this formulation, the kinematic boundary condition is treated by solving an advection equation satisfied by the level set function. This equation is solved on a computational domain containing the fluid domain over small time subintervals. Each iteration of the algorithm corresponds to the adevction of the fluid domain on a small time subinterval and to solve the time-discretized Navier–Stokes equations only on the fluid domain. The time discretization of the Navier–Stokes equation is done by the characteristic method. Then, the key tool which lets us solve this equation on the fluid domain is the anisotropic mesh adaptation. Indeed, at each iteration the mesh is adapted to the fluid domain such that we get convenient approximation and geometric errors in the vicinity of the fluid domain. This resolution is done using the Uzawa algorithm for a convenient finite element method. The slip boundary conditions are considered by adding a penalization term to the variational formulation associated to the problem.
504

Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2D Lagrange-projection / High-order fluid-structure coupling with conservative Lagrange-remap finite volume schemes on Cartesian grids

Dakin, Gautier 09 November 2017 (has links)
Ce travail est consacré à l’étude numérique de l’interaction entre un fluide compressible et une structure indéformable, en adaptant une famille récente de schémas d’ordre très élevé à la prise en compte de conditions aux bords particulières entre le fluide et la structure. Plus précisément,on évalue l’apport de schémas d’ordre strictement supérieur à 3 par rapport à des stratégies plus classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu’il est possible de réaliser le couplage à tout ordre et qu’il existe des configurations pour lesquelles on observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions aux bords. Un schéma sur grilles cartésiennes décalées et d’ordre très élevé est proposé pour la résolution des équations d’Euler en 1D/2D. Ce schéma est basé sur le formalisme Lagrange-projection et bien que formulé en énergie interne assure conservation et consistance faible grâce à un correctif en énergie interne. Parallèlement, l’étude pour les systèmes hyperboliques linéaires de discrétisation à l’ordre très élevé des conditions aux bords est faite. Elle met en évidence la nécessité pour l’ordre élevé de s’intéresser à la stabilité des schémas ainsi obtenus. À partir de ces travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour les équations d’Euler en 1D et 2D. Enfin, une procédure de couplage entre fluide compressible et structure indéformable est proposée. / This work is devoted to the construction of stable and high-order numerical methods in order to simulate fluid - rigid body interactions. In this manuscript, a bibliographic overview is done, which highlights theoretical results about hyperbolic system of conservation laws, as well as the methods available in the literature for the hydrodynamics simulation and the numericalboundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-remap formalism, and although formulated in internal energy, ensures both conservation and weak consistency thanks to an internal energy corrector. In the same time, the study of high-order numerical boundary treatment for linear hyperbolic system is done. It highlights the necessity to focus especially on the linear stability of the effective scheme. Starting from the linear results, the numerical boundary treatment with imposed normal velocity is done for Euler equations in 1D and 2D. Last, the coupling between a compressible fluid and a rigid body is realized, using the designed procedure for numerical boudary treatment.
505

Modeling with consideration of the fluid-structure interaction of the behavior under load of a kite for auxiliary traction of ships / Modélisation avec prise en compte de l’interaction fluide-structure du comportement sous charge d’un cerf-volant pour la traction auxiliaire des navires

Duport, Chloé 21 December 2018 (has links)
Cette thèse fait partie du projet beyond the sea® qui a pour but de développer la traction par cerf-volant à boudins gonflés (kite) comme système de propulsion auxiliaire des navires. Comme le kite est une structure souple, il est nécessaire de mettre en place une boucle d’interaction fluide-structure pour calculer la géométrie du kite en vol et ses performances aérodynamiques. Un modèle de Ligne Portante 3D Non-Linéaire a été développé pour pouvoir gérer ces ailes non planes, avec des angles de dièdre et de flèche qui varient le long de l’envergure, et également pour pouvoir prendre en compte la non-linéarité du coefficient de portance de la section aérodynamique. Le modèle a été vérifié par des simulations RANSE sur différentes géométries et donne des résultats satisfaisants pour des angles d’incidence et de dérapage variant jusqu’à 15°, avec des différences relatives de quelques pour cent pour l’estimation de la portance globale de l’aile. Les résultats locaux sont aussi correctement estimés, le modèle est capable d’estimer la position du minimum et du maximum de chargement local, selon l’envergure de l’aile, et cela même pour une aile en dérapage. En parallèle, un modèle structure a été développé. L’idée principale du modèle Kite as a Beam est de réduire le kite à un ensemble d’éléments poutre, chacun équivalent à une partie du kite composé d’une section du boudin d’attaque, de deux lattes gonflées et de la canopée correspondante. Le modèle Kite as a Beam a été comparé à un modèle éléments finis complet du kite sur des cas de déplacements élémentaires. Les résultats montrent certaines différences de comportement entre les deux modèles, avec notamment une surestimation de la raideur en torsion pour le modèle Kite as a Beam. Finalement, le modèle Kite as a Beam a été couplé avec la Ligne Portante 3D Non-Linéaire, puis comparé au modèle éléments finis, couplé également avec la Ligne Portante. La réduction du temps de calcul est réellement importante mais les résultats de la comparaison montrent la nécessité de calibrer le modèle Kite as a Beam pour pouvoir retrouver correctement les résultats du modèle éléments finis. / The present thesis is part of the beyond the sea® project which aims to develop tethered kite systems as auxiliary devices for ship propulsion. As a kite is a flexible structure, fluid-structure interaction has to be taken into account to calculate the flying shape and aerodynamic performances of the wing. A 3D Non-Linear Lifting Line model has been developed to deal with non-straight kite wings, with dihedral and sweep angles variable along the span and take into account the non-linearity of the section lift coefficient. The model has been checked with 3D RANSE simulations over various geometries and produces satisfactory results for range of incidence and sideslip up to 15°, with typical relative differences of few percent for the overall lift. The local results are also correctly estimated, the model is able to predict the position of the minimum and maximum loading along the span, even for a wing in sideslip. Simultaneously, a structure model has been developed. The core idea of the Kite as a Beam model is to approximate a Leading Edge Inflatable kite by an assembly of beam elements, equivalent each to a part of the kite composed of a portion of the inflatable leading edge, two inflatable battens and the corresponding canopy. The Kite as a Beam model has been compared to a complete kite Finite Element model over elementary comparison cases. The results show the behaviour differences of the two models, for example the torsion stiffness is globally overestimated by the Kite as a Beam model. Eventually, the Kite as a Beam model coupled with the 3D Non-Linear Lifting Line model is compared to the complete finite element model coupled with the 3D Non-Linear Lifting Line model. The gain in computation time is really significant but the results show the necessity of model calibration if the Kite as a Beam model should be used to predict the results of the complete finite element model.
506

Structures actives dans un fluide visqueux : modélisation, analyse mathématique et simulations numériques / Active structures in a viscous fluid : model, mathematical analysis and numerical simulations

Vergnet, Fabien 03 July 2019 (has links)
Le transport de micro-organismes et de fluides biologiques au moyen de cils et flagelles est un phénomène universel que l’on retrouve chez presque tous les êtres vivants. Le but de cette thèse est la modélisation, l’analyse mathématique et la simulation numérique de problèmes d’interaction fluide-structure qui font intervenir des structures actives, capables de se déformer d’elles-mêmes grâce à des contraintes internes, et un fluide à faible nombre de Reynolds, modélisé par les équations de Stokes. Le Chapitre 2 traite de la modélisation de ces structures actives en considérant la loi de Saint Venant-Kirchhoff dans les équations de l’élasticité et en ajoutant un terme d’activité au second tenseur de contraintes de Piola-Kirchhoff. Les équations fluide et structures sont couplées à l’interface fluide-structure et l’étude mathématique d’un problème linéarisé et discrétisé en temps est ensuite réalisée. Une reformulation sous forme d’un problème point-selle est proposée et utilisée pour la simulation numérique du problème. Le Chapitre 3 s’intéresse à l’analyse du problème d’interaction fluide-structure quasi-statique avec une structure active, pour lequel nous montrons l’existence et l’unicité, pour des données petites, d’une solution forte localement en temps. Le Chapitre 4 présente une nouvelle méthode de type domaine fictif (la méthode de prolongement régulier ) pour la résolution numérique de problèmes de transmission. La méthode est d’abord développée pour un problème de transmission de Laplace, puis étendue aux problèmes de transmission de Stokes et d’interaction fluide-structure. / The transport of microorganisms and biological fluids by means of cilia and flagella is an universal phenomenon found in almost all living beings. The aim of this thesis is to model, analyze and simulate mathematical fluid-structure interaction problems involving active structures, capable of deforming themselves through internal stresses, and a low Reynolds number fluid, modeled by Stokes equations. In Chapter 2, these active structures are modeled as elastic materials satisfying Saint Venant-Kirchhoff law for elasticity whose activity comes from the addition of an activity term to the second Piola-Kirchhoff stress tensor. Elasticity and Stokes equations are coupled on the fluid-structure interface and the mathematical study of the linearized problem discretized in time is realized. Then, the problem is formulated as a saddle-point problem which isused for numerical simulations. Chapter 3 focuses on the analysis of a quasi-static fluid-structure with an active structure, for which we show existence and uniqueness, for small data, of a strong solution locally in time. Chapter 4 presents a new fictitious domain method (the smooth extension method) for the numerical resolution of transmission problems. The method is first developed for a Laplace transmission problem and further extended to Stokes transmission and fluid-structure interaction problems.
507

Hydrodynamique de fluides élancés à bas nombres de Reynolds / Low Reynolds number hydrodynamics of immersed thin and slender bodies

Xu, Bingrui 08 April 2016 (has links)
Le sujet de cette thèse est l'hydrodynamique de corps minces (feuilles) et élancés (filamenteux) de fluide visqueux immergés dans un second fluide ayant une viscosité différente. Nous nous concentrons sur deux exemples : la subduction de la lithosphère océanique et le flambage de fils visqueux dans microcanaux divergents, les deux ont un nombre de Reynolds caractéristique Re<<1. Pour le cas de la subduction d'une feuille mince, nous proposons une hybride méthode «boundary integral & thin sheet» (BITS). Après la validation en comparant ses prévisions avec celles de la boundary-element méthode, deux solutions instantanées et dépendant du temps sont effectués pour analyser la subduction avec la méthode BITS. L'analyse à l'échelle de la vitesse d'immersion normalisée en fonction de «la rigidité en flexion» de la feuille est confirmée par nos prédictions numériques. Pour des rapports de viscosité modérée (≈100), la feuille amincit sensiblement quand elle coule, mais pas assez pour conduire à la «rupture de la dalle» que l'on observe dans plusieurs zones de subduction sur Terre. Ensuite, le code BLEU parallèle pour écoulements polyphasiques est utilisé à simuler pliage visqueux tridimensionnel dans des microcanaux divergent. Nous avons réalisé une étude paramétrique comprenant cinq simulations dans lequel le rapport de débit volumétrique, le rapport de viscosité, le nombre de Reynolds, et la forme de la chaîne ont été modifiées par rapport à un modèle de référence. Le fil devient instable à une instabilité de pliage en raison de la contrainte de compression longitudinale. L'axe de pliage initial peut être parallèle ou perpendiculaire à la dimension étroite de la chambre. Dans le premier cas, le pliage transforme lentement au pliage perpendiculaire au moyen d'une torsion, ou peut disparaître totalement. / The hydrodynamics of thin (sheet-like) and slender (filamentary) bodies of viscous fluid immersed in a second fluid with a different viscosity is studied. Here we focuses on two examples: the subduction of oceanic lithosphere and the buckling of viscous threads in diverging microchannels, both have a characteristic Reynolds number Re<<1. A hybrid boundary integral & thin sheet method (BITS) is build for the subduction of 2D immersed sheet. After the validation by comparing with the results of full boundary elements method, both instantaneous and time-dependant soloutions are done to analyze the subduction with the BITS method. The scaling analysis of the normalized sinking speed V/V_Stokes as a function of the sheet's 'flexural stiffness' is confirmed by our numerical predictions. For moderate viscosity ratios (≈100), the sheet thins substantially as it sinks, but not enough to lead to the ‘slab breakoff’ that is observed in several subduction zones on Earth. Next, the parallel code BLUE for multi-phases flows is used to simulate the 3-dimensional viscous folding in diverging microchannels. We performed a parameter study comprising five simulations in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. The thread becomes unstable to a folding instability due to the longitudinal compressive stress. The initial folding axis can be either parallel or perpendicular to the narrow dimension of the chamber. In the former case, the folding slowly transforms via twisting to perpendicular folding , or may disappear totally.
508

Contribution à la modélisation biofidèle de l’être humain par la prise en compte des interactions fluide-structure / Toward a more biofidelic modelling of the human body involving fluid-structure interactions

Fontenier, Benoît 01 December 2016 (has links)
Ces travaux visent à améliorer la biofidélité des modèles virtuels de l’être Humain. Les statistiques montrent que la tête humaine est fréquemment sujette à des traumatismes cérébraux, des lésions et autres blessures. Une attention particulière sera donc donnée à la modélisation de la tête. Afin de mieux prédire les mécanismes lésionnels de la tête, la biofidélite des modèles doit être améliorée, pour cela les effets du fluide situé à l’intérieur de la tête doivent être pris en compte. Cependant, la modélisation des interactions entre un fluide corporel visqueux et un matériau mou comme le cerveau reste un verrou scientifique. Il est proposé d’étudier en détail la modélisation des interactions fluide-structure entre un fluide et un corps mou. Premièrement, une étude bibliographique détaillée sur les méthodes numériques de modélisation des interactions fluides-structure a permis d’évaluer chacune d’elles et de juger de celle qui est la mieux adaptée pour la résolution de la problématique. Deuxièmement, lors de travaux de thèse précédents, une expérience a été réalisée montrant l’influence du liquide cérébrospinal sur la cinématique du cerveau lors d’un chargement dynamique. Cette expérience est utilisée dans un premier temps pour caractériser numériquement le gel silicone Sylgard 527 utilisé comme substitut de cerveau. Dans un second temps des méthodes de couplage partitionné disponible dans le code commercial LS-Dyna ICFD sont utilisées pour modéliser l’expérience. Bien que les modèles de gel précédemment caractérisés ont été utilisés, la version avec fluide n’a pas pu être modélisée avec succès. Troisièmement, un code de couplage partitionné est donc développé. Il consiste en un middleware écrit en C++ couplant deux codes éprouvés, OpenFOAM et LS-Dyna pour la modélisation du fluide et du solide respectivement. De plus, parce que très peu d’essais expérimentaux utilisables pour la validation de code d’interaction fluide-structure sont disponibles dans la littérature, une expérience permettant cela a été réalisée dans une soufflerie. La comparaison des prédictions numériques avec les résultats expérimentaux est prometteuse et donne des résultats globaux satisfaisants. Les points qui ne peuvent pas être validés nécessitent de plus amples investigations et permettront d’améliorer les techniques de modélisations et le développement du code. / The purpose of this work is to improve the biofidelity of the human body models. The work is focused on the human head as it is one of the most injured part. In order to improve the traumatic brain injury onset and mechanism, the biofidelity of the head models has to be increased, thus, the fluids embedded inside the head has to be taken into account. Nevertheless, the modelling of the interactions occurring between the viscous corporal fluids and the soft matter as the brain remains a challenge. This study intends to investigate the fluid-structure interactions between a soft structure and a fluid. Firstly, in order to found the most relevant methods to solve the problem, a deep literature survey has pointed-out all the numerical methods available nowadays. Secondly, in a previous PhD work an experimental test has been carried-out to demonstrate the influence of the cerebrospinal fluid on the brain kinematics under dynamical load case. On one hand, the Silicon Sylgard 527 gel used as brain substitut has been characterized . Subsequently the partitioned coupling methods available in LS-Dyna ICFD have been assessed to model the experiment. Although, the previous characterized gel model has been used, the experiment has been unsuccessfully completed. Accordingly, it has been decided to develop an in-house coupling code. Thirdly, a partitioned coupling code has been developed. It is a middleware in C++ between two well establishing solvers OpenFOAM and LS-Dyna respectively for the fluid and the solid. Because there is very few experimental tests for the coupling code validation, it has been carried-out in this work a fluid-structure interaction experiment involving a soft plate in a wind channel. This appealing experiment allows the scientific community to validate easily their coupling algorithms. Subsequently, the developed coupling code is used to model the wind channel. The results depict a good overall agreement between the experiment and the simulation. Nonetheless, in order to get validated results further investigation are required mainly about the flow modelling.
509

Dynamics of flexible and Brownian filaments in viscous flow / Dynamique des filaments flexibles et browniens en écoulement visqueux

Liu, Yanan 24 September 2018 (has links)
La dynamique de filaments flexibles individuels en écoulement visqueux est une étape essentielle pour comprendre et contrôler la rhéologie de nombreux fluides complexes. Cette dynamique sous-tend également une multitude de processus biophysiques allant de la propulsion des micro-organismes aux écoulements intracellulaires. Cette thèse présente des expériences systématiques permettant d’étudier la dynamique de filaments flexibles browniens dans un écoulement visqueux. Nous avons choisi d’utiliser un biopolymère, l’actine, comme système modèle de filaments. Sa longueur typique varie de 1 à 100 μm, il est flexible à ces échelles avec une longueur de persistance de l’ordre de 20μm, à cause de ses petites dimensions, il est soumis aux forces Browniennes avec des fluctuations en flexion, et enfin il peut être marqué en fluorescence. Nous utilisons des dispositifs microfluidiques associés à des systèmes de contrôle d’écoulements, un microscope optique équipé́ avec une platine motorisée pour réaliser des expériences contrôlées permettant de suivre la dynamique des filaments d’actine dans un écoulement de cisaillement pur et dans un écoulement élongationnel. Pour les expériences en cisaillement pur, des simulations reproduisant les conditions expérimentales ont aussi été́ menées en utilisant la théorie des poutres inextensibles d’Euler-Bernoulli et la théorie non locale des corps élancés en présence de fluctuations Browniennes et sont en accord quantitatif avec les résultats expérimentaux. Nous montrons que la dynamique des filaments dans ce système est principalement régie par le nombre élasto-visqueux, nombre sans dimension comparant les forces de trainée visqueuses aux forces de flexion élastiques, les fluctuations thermiques ne jouant qu’un rôle secondaire. Nous présentons une caractérisation complète des différents modes de déformation subies par le filament pendant une rotation ainsi que des transitions entre les différents modes. Dans la géométrie élongationnelle, nous avons choisi un canal hyperbolique optimisé pour permettre de longs temps de résidence sous taux de déformation constant. Nous avons observé́ directement la suppression des fluctuations transverse dans la partie extensionnelle tandis que nous observons, dans la partie compressive la formation de structures hélocoïdales tridimensionnelles après le flambage du filament. Pour finir, ce manuscrit de thèse décrit des développements expérimentaux permettant de fabriquer des suspensions de filaments d’actine relativement monodisperse en taille ainsi que des résultats préliminaires sur des effets rhéofluidifiants. Au bilan, les résultats présentes dans ce manuscrit pose les premières pierres de travaux futurs en direction de l’étude de la dynamique de ces filaments dans des écoulements plus complexes comme des écoulements de Poiseuille ou oscillants. Ils permettent aussi d’envisager des études sur le lien entre déformations de particules et propriétés des suspensions diluées d’objets flexibles et Brownien, lien encore peu étudié du point de vue expérimental. / The dynamics of individual flexible filament in a viscous flow is the key to deciphering the rheolog- ical behavior of many complex fluids and soft materials. It also underlies a wealth of biophysical processes from flagellar propulsion to intracellular streaming. This thesis presents systematic exper- iments to investigate the dynamics of flexible and Brownian filaments in viscous flows. Biopolymer actin has been chosen to be our experimental model filament: its typical length can be varied from 1 to 100 μm, it is flexible at these dimensions with a persistence length in the order of 20μm, it is Brow- nian due to its small diameter with bending fluctuations and it can be labelled by fluorescent dye. Microfluidic channels and flow control systems are combined to optical microscope with automated stage to carry out well-controlled experiments on the diverse dynamics of actin filaments in shear flow and pure straining flow. In shear flow, simulations matching the experimental conditions have also been performed using inextensible Euler-Bernoulli beam theory and non-local slender body hy- drodynamics in the presence of thermal fluctuations and agree quantitatively with the experimental results. We demonstrate that filament dynamics in this flow geometry is primarily governed by a dimension- less elasto-viscous number comparing viscous forces to elastic forces with thermal fluctuations only playing a secondary role. We present a complete characterization of the different modes of defor- mation undergone by the filament while rotating as well as of the transitions between these different modes. In pure straining flow, we opt to use an optimized hyperbolic channel to allow long resi- dence time at constant strain rate to be applied. We directly observe the suppression of transverse fluctuations in the extensional part of the hyperbolic channel while we observe, in the compressive part of the flow, the formation of three dimensional helical structures subsequent to the initial buck- ling of the filament. Finally, this thesis manuscript also reports on experimental developments to fabricate suspensions of actin filament with a narrow distribution of lengths and on preliminary re- sults on shear-thinning effects. All together the results presented here pave the way of future studies towards the understanding of filament dynamics in more complex flows, as Poiseuille flows or oscil- latory flows, as well as towards establishing the link between filament deformations and rheological response in dilute suspensions of flexible Brownian filaments, which remains nearly unexplored from an experimental point of view.
510

Étude hydroacoustique de la réponse d'une structure à une excitation de couche limite turbulente. / Hydroacoustic study of the response of a structure to a turbulent boundary layer induced pressure loading.

Clement, Adrien 09 December 2015 (has links)
Les travaux présentés s’intéressent à la réponse vibratoire et au champ acoustique émis par une structure immergée et excitée par une couche limite turbulente, dans le domaine des bas nombres d’ondes et pour un nombre de Mach faible. Ce travail s’inscrit dans la problématique d’amélioration de laprédiction du bruit rayonné dans ce type de configurations, et peut trouver son application à la discrétion acoustique des navires, ou à la caractérisation du bruit rayonné par des structures externes excitées par un écoulement.Numériquement, une analyse modale de la réponse de la structure en formulation (u,p,φ) est réalisée à l’aide du code élément finis Code_Aster. L’excitation est modélisée par une somme d’ondes planes de pression dont la densité spectrale est obtenue à partir des modèles d’excitation pariétale disponibles dans la littérature. Une analyse harmonique sur base modale est réalisée pour chaque cas de chargement.Cette approche permet la prise en compte du couplage fluide-structure dans le cas d’un fluide lourd et présente l’avantage de s’affranchir des hypothèses généralement faites, de fluide léger et d’orthogonalité des déformées modales.Les résultats issus de la modélisation numérique sont comparés à des données expérimentales, concernant le comportement vibratoire d’un dispositif constitué d’une plaque plane excitée par un écoulement généré en tunnel hydrodynamique. Les résultats numériques et expérimentaux observés sont proches,qu’il s’agisse du comportement global, du niveau spectral moyen en déplacement ou du niveau de pression acoustique mesuré. En complément, l’influence de défauts, constitués de marche montantes et descendantes de hauteur inférieure à l’épaisseur de la couche limite, sur l’excitation et la réponse de la structure est explorée expérimentalement. / The following work consist in the study of the vibroacoustic response of a structure submerged in fluid, under a turbulent boundary layer flow, the response of the structure is driven by the low wavenumber behaviour, for a small Mach number. This work aims at providing better means of predicting the noise radiated in such setups, mainly regarding stealthiness of ships and submarines and noise radiated by outer structures.A numerical modal analysis based on the (u,p,φ) formulation available in the finite element software Code_Aster is performed. The pressure induced by the boudary layer is then described as a sum of plane waves and several harmonical analysis are performed on the reduced problem, projected on the (u,p,φ) modal basis, one for each term of the sum. This allows us to account for the fluid-structure interaction (inertial and acoustic) in confined and infinite fluid domains. Most numerical models found in scientific papers are making the assumption of a light fluid, or a fluid loaded plate, thus not taking clearly into account the fluid-strucure interaction or only the inertialpart. Here the interaction due to the acoustic field radiated by the plate is fully accounted for.The validity of the proposed numerical method is assesed and numerical results are compared to data obtained from an experimental setup used within a hydrodynamic tunnel. Numerically, a good reproduction of the behaviour of the plate is obtained, both in terms of displacement and spectral levels. The acoustic levels are also compared to their numerical counterparts at the position of the transducer. Moreover, an experimantal analysis is performed, for backward and forward steps of height smaller than the thickness of the boundary layer, in order to investigate the influence of such configurations on the boundary layer excitation and on the vibroacoustic response.

Page generated in 0.0203 seconds