Spelling suggestions: "subject:"aquation dde navierstokes"" "subject:"aquation dde avierstokes""
1 |
Contribution à l'analyse numérique des méthodes de couplage particules-grille en mécanique des fluidesKong, Jian Xin 07 October 1993 (has links) (PDF)
Ce travail concerne l'étude numérique des méthodes du couplage particules-grille (ou appelée methode de vortex in cell) en écoulements bidimensionnels de fluides incompressibles, tant parfait que peu visqueux. Dans la première partie de ce travail on s'intéresse a la resolution numérique des équations d'Euler incompressibles par des méthodes de vortex in cell (vic). On propose une technique itérative pour en améliorer la précision et on montre sur des cas tests l'efficacité de ces techniques. Dans la seconde partie, on montre la convergence pour les équations de navier-stokes d'une methode de vortex utilisant la diffusion numérique produite par la reinitialisation des particules pour simuler la diffusion physique. On définit un schéma vic base sur les techniques de la première partie et on l'utilise pour la simulation de turbulence bidimensionnelle périodique. On obtient les premiers résultats satisfaisants par methode de vortex in cell pour ce cas test difficile
|
2 |
Quelques problèmes d'optimisation de formes en sciences du vivantPrivat, Yannick 21 October 2008 (has links) (PDF)
Dans cette thèse, nous nous demandons si certaines formes présentes dans la nature résultent de l'optimisation d'un critère. Plus précisément, nous considérons un organe ou une partie du corps humain et tentons de deviner un critère que la nature aurait pu chercher à optimiser. Nous résolvons alors le problème d'optimisation de formes résultant afin de comparer la forme obtenue, théoriquement ou numériquement, avec la forme réelle de l'organe. Si ces deux formes sont proches, on pourra en déduire que le critère est convaincant. <br />Dans la première partie de cette thèse, nous considérons l'exemple d'une fibre nerveuse de type axone ou dendrite. Nous proposons deux critères pour expliquer sa forme. Le premier traduit l'atténuation dans le temps du message électrique traversant la fibre et le second l'atténuation dans l'espace de ce message. Dans notre choix de modélisation, nous distinguons deux types de fibres nerveuses : celles qui sont connectées au noyau de la cellule et celles qui sont connectées entre elles. Les problèmes correspondants se ramènent à la minimisation par rapport au domaine des valeurs propres d'un opérateur elliptique et d'une fonction de transfert faisant intervenir la trace sur le bord du domaine du potentiel électrique au sein de la fibre.<br />La seconde partie de cette thèse est dédiée à l'optimisation de la forme d'un arbre bronchique ou d'une partie de cet arbre. Nous considérons un critère de type "énergie dissipée". Dans une étude théorique, nous prouvons tout d'abord que le cylindre n'est pas une conduite optimale pour minimiser l'énergie dissipée par un fluide newtonien incompressible satisfaisant aux équations de Navier-Stokes.<br />Nous effectuons ensuite des simulations en deux et trois dimensions afin de tester numériquement si l'arbre bronchique est ou non optimal.
|
3 |
Etude théorique et numérique de quelques problèmes d'écoulements et de chaleur hyperboliqueBoussetouan, Imane 10 December 2012 (has links) (PDF)
Ce travail de thèse a pour but d'étudier des écoulements non stationnaires de fluides incompressibles Newtoniens et non isothermes. Le problème est décrit par les lois de conservation de la masse, de la quantité de mouvement et de l'énergie. Nous nous intéressons au couplage entre le système de Navier-Stokes et l'équation de la chaleur hyperbolique (le résultat de la combinaison entre la loi de conservation d'énergie et la loi de Cattaneo). Cette dernière est une modification de la loi de Fourier utilisée habituellement, elle permet de surmonter ''le paradoxe de la chaleur'' et d'obtenir une description plus précise de la propagation de la chaleur. Le système couplé est un problème hyperbolique-parabolique dont la viscosité dépend de la température, alors que la capacité thermique et le terme de dissipation dépendent de la vitesse. Afin d'obtenir un résultat d'existence de solutions du problème couplé, nous démontrons d'abord l'existence et l'unicité de la solution du problème hyperbolique puis nous introduisons une discrétisation en temps et nous étudions la convergence des solutions approchées vers celles du problème original. Dans un deuxième temps nous étudions l'existence et l'unicité de la solution du système de Navier-Stokes muni des conditions aux limites de type Tresca puis de type Coulomb en dimension 2 et 3. Dans le chapitre 3, nous proposons une discrétisation en temps du problème d'écoulement dans le cas de la condition au limite de type Tresca et nous établissons la convergence des solutions approchées. Le dernier chapitre de ce mémoire est consacré à l'étude du problème couplé dans le cas de conditions aux limites de type Tresca. L'existence d'une solution est obtenue par un argument théorique de point fixe en dimension 2 et également par une méthode de discrétisation en temps qui conduit à résoudre sur chaque sous intervalle de temps un problème découplé pour la vitesse et la pression d'une part et la température d'autre part.
|
4 |
Naviers-Stokes equations with Navier boundary condition / Équations de Navier-Stokes avec la condition de NavierGhosh, Amrita 15 November 2018 (has links)
Le titre de ma thèse de doctorat est "Equations de Stokes et de Navier-Stokes avec la con- dition de Navier", où j’ai considéré l’écoulement d’un fluide newtonien visqueux, incompressible dans un domaine borné de R3. L’écoulement du fluide est décrit par les équations bien connues de Navier-Stokes, données par le système suivant ∂t − ∆u + (u • ∇)u + ∇π = 0, div u = 0 dans Ω × (0, T )u • n = 0, 2[(Du)n]τ + αuτ = 0 sur Γ × (0, T )u(0) = u0 dans Ω (0.1) dans un domaine borné Ω ⊂ R3 de frontière Γ, éventuellement non simplement connexe, de classe C1,1. La vitesse initiale u0 et le coefficient de friction α, scalaire, sont des fonctions don- nées. Les vecteurs unitaires normal extérieur et tangents à Γ sont notés n et τ respectivement et Du = 1 (∇u + ∇uT ) est le tenseur des déformations. Les fonctions u et π décrivent respective- ment les champs de vitesses et de pression du fluide dans Ω satisfaisant la condition aux limites (0.1.2).Cette condition aux limites, proposée par H. Navier en 1823, a été abondamment étudiée ces dernières années, qui pour de nombreuses raisons convient parfois mieux que la condition aux limites de Dirichlet sans glissement : elle offre plus de liberté et est susceptible de fournir une solution physiquement acceptable au moins pour certains des phénomènes paradoxaux résultant de la condition de non-glissement, comme par exemple le paradoxe de D’Alembert ou le paradoxe de non-collision.Ma thèse comporte trois parties. Dans la première, je cherche à savoir si le problème (0.1) est bien posé en théorie Lp, en particulier l’existence, l’unicité de solutions faibles, fortes dans W 1,p(Ω) et W 2,p(Ω) pour tout p ∈ (1, ∞), en considérant la régularité minimale du coefficient de friction α. Ici α est une fonction, pas simplement une constante qui reflète les diverses propriétés du fluide et/ou de la frontière, ce qui nous permet d’analyser le comportement de la solution par rapport au coefficient de frottement.Utilisant le fait que les solutions sont bornées indépendamment de α, on montre que la solution des équations de Navier-Stokes avec la condition de Navier converge fortement vers une solution des équations de Navier-Stokes avec la condition de Dirichlet, correspondant à la même donnée initiale dans l’espace d’énergie lorsque α → ∞. Des résultats similaires ont été obtenus pour le cas stationnaire.Le dernier chapitre concerne les estimations pour le problème de Robin pour le laplacien : l’opérateur elliptique de second ordre suivant, sous forme divergentielle dans un domaine bornéΩ ⊂ Rn de classe C1, avec la condition aux limites de Robin a été considéré div(A∇)u = divf + F dans Ω, ∂u+ αu = f n + g sur Γ.∂n (0.2) Les coefficients de la matrice symétrique A sont supposés appartenir à l’espace V MO(R3). Aussi α est une fonction appartenant à un certain espace Lq . En plus de prouver l’existence, l’unicité de solutions faibles et fortes, nous obtenons une borne sur u, uniforme par rapport à α pour α suffisamment large, en norme Lp. Pour plus de clarté, nous avons étudié séparément les deux cas: l’estimation intérieure et l’estimation au bord. / My PhD thesis title is "Navier-Stokes equations with Navier boundary condition" where I have considered the motion of an incompressible, viscous, Newtonian fluid in a bounded do- main in R3. The fluid flow is described by the well-known Navier-Stokes equations, given by thefollowing system 1 )t − L1u + (u ⋅ ∇)u + ∇n = 0, div u = 01u ⋅ n = 0, 2[(IDu)n]r + aur = 0 in Q × (0, T )on Γ × (0, T ) (0.1) 11lu(0) = u0 in Qin a bounded domain Q ⊂ R3 with boundary Γ, possibly not connected, of class C1,1. The initialvelocity u0 and the (scalar) friction coefficient a are given functions. The unit outward normal and tangent vectors on Γ are denoted by n and r respectively and IDu = 1 (∇u + ∇uT ) is the rate of strain tensor. The functions u and n describe respectively the velocity2 and the pressure of a fluid in Q satisfying the boundary condition (0.1.2).This boundary condition, first proposed by H. Navier in 1823, has been studied extensively in recent years, among many reasons due to its contrast with the no-slip Dirichlet boundary condition: it offers more freedom and are likely to provide a physically acceptable solution at least to some of the paradoxical phenomenons, resulting from the no-slip condition, for example, D’Alembert’s paradox or no-collision paradox.My PhD work consists of three parts. primarily I have discussed the Lp -theory of well-posedness of the problem (0.1), in particular existence, uniqueness of weak and strong solutions in W 1,p (Q) and W 2,p (Q) for all p ∈ (1, ∞) considering minimal regularity on the friction coefficienta. Here a is a function, not merely a constant which reflects various properties of the fluid and/or of the boundary. Moreover, I have deduced estimates showing explicitly the dependence of u on a which enables us to analyze the behavior of the solution with respect to the friction coefficient.Using this fact that the solutions are bounded with respect to a, we have shown the solution of the Navier-Stokes equations with Navier boundary condition converges strongly to a solution of the Navier-Stokes equations with Dirichlet boundary condition corresponding to the sameinitial data in the energy space as a → ∞. The similar results have also been deduced for thestationary case.The last chapter is concerned with estimates for a Laplace-Robin problem: the following second order elliptic operator in divergence form in a bounded domain Q ⊂ Rn of class C1, withthe Robin boundary condition has been considered1div(A∇)u = divf + F in Q, 11 )u + u = f ⋅ n + g on Γ. (0.2) 2The coefficient matrix A is symmetric and belongs to V MO(R3). Also a is a function belonging to some Lq -space. Apart from proving existence, uniqueness of weak and strong solutions, we obtain the bound on u, uniform in a for a sufficiently large, in the Lp -norm. We have separately studied the two cases: the interior estimate and the boundary estimate to make the main idea clear in the simple set up.
|
5 |
Sur la stabilite des Ondes Spheriques et le Mouvement d'un Fluide entre deux Plaques InfiniesRoussier-Michon, Violaine 05 December 2003 (has links) (PDF)
Cette thèse a pour objet le comportement asymptotique de solutions globales d'Equations aux Dérivées Partielles d'évolution paraboliques semilinéaires. A travers deux exemples distincts, on traite de la convergence en temps des solutions vers des solutions particulières (ondes progressives, solutions autosimilaires). Dans un premier temps, on étudie la stabilité asymptotique des ondes progressives à symétrie sphérique dans une équation de réaction-diffusion scalaire avec non-linéarité bistable. On obtient un résultat de stabilité pour de petites perturbations radiales et d'instabilité pour des perturbations quelconques. Dans un deuxième temps, on calcule un développement asymptotique jusqu'au second ordre des solutions, à donnée initiale petite, de Navier-Stokes et de Navier-Stokes Coriolis dans une bande tridimensionnelle. On montre notamment que leur comportement asymptotique est régi par le tourbillon d'Oseen. On généralise ensuite ce résultat à toute solution globale uniformément bornée en temps, sans aucune hypothèse de petitesse. Enfin, on met en évidence de telles solutions pour l'équation de Navier-Stokes Coriolis pour les fluides tournants dans le cas d'une rotation suffisamment rapide.
|
6 |
Modélisation des problèmes bi-fluides par la méthode des lignes de niveau et l'adaptation du maillage : Application à l'optimisation des formes / Modeling the problem two-fluid flows by the level set method and mesh adaptation : Application to the shape optimizationTran, Thi Thanh Mai 07 January 2015 (has links)
La première préoccupation de cette thèse est le problème de deux fluides ou un fluide à deux phases, c’est-à-dire que nous nous sommes intéressés à la simulation d’écoulements impliquant deux ou plusieurs fluides visqueux incompressibles immiscibles de propriétés mécaniques et rhéologiques différentes. Dans ce contexte, nous avons considéré que l’interface mobile entre les deux fluides est représentée par la ligne de niveau zéro d’une fonction ligne de niveau et régie par l’équation d’advection, où le champ advectant est la solution des équations de Navier-Stokes. La plupart des méthodes de capture d’interface utilisent une grille cartésienne fixe au cours de la simulation. Contrairement à ces approches, la nôtre est fortement basée sur l’adaptation de maillage, notamment au voisinage de l’interface. Cette adaptation de maillage permet une représentation précise de l’interface, à l’aide de ses propriétés géométriques, avec un nombre de degrés de liberté minimal.La résolution d'un problème à deux fluides est résumée par les étapes suivantes:- Résoudre les équations de Navier-Stokes par la méthode de Lagrange-Galerkin d’ordre 1;- Traitement géométrique la tension de surface se basant sur la discrétisation explicite de l'interface dans le domaine de calcul;- Résoudre l'équation d’advection par la méthode des caractéristiques;- Les techniques de l'adaptation de maillage.On propose ici un schéma entre l’advection de l’interface, la résolution des équations de Navier-Stokes et l’adaptation de maillage. Certains résultats des exemples classiques pour les deux problèmes de monofluide et bifluide comme la cavité entrainée, la rémontée d’une bulle, la coalescence de deux bulles et les instabilités Rayleigh-Taylor sont étudiés en deux et trois dimensions.La deuxième partie de cette thèse est liée à l'optimisation des formes en mécanique des fluides. Nous construisons un schéma numérique en utilisant la méthode des lignes de niveau et l’adaptation de maillage dans le contexte des systèmes de Stokes. Le calcul de la sensibilité de la fonction objective est liée à la méthode de variation des limites d’Hadamard et les dérivées des formes sont calculées par la méthode de Céa. Un exemple numérique avec la fonction objective de la dissipation d'énergie est présenté pour évaluer l'efficacité et la fiabilité du schéma proposé. / The first concern of this thesis is the problem of two fluids flow or two-phase flow, i.e weare interested in the simulation of the evolution of an interface (or a free surface) between twoimmiscible viscous fluids or two phases of a fluid. We propose a general scheme for solving two fluids flow or two-phase flow which takes advantage of the flexibility of the level set method for capturing evolution of the interfaces, including topological changes. Unlike similar approaches that solve the flow problem and the transport equation related to the evolution of the interface on Cartesian grids, our approach relies on an adaptive unstructured mesh to carry out these computations and enjoys an exact and accurate description of the interface. The explicit representation of the manifold separating the two fluids will be extracted to compute approximately the surface tension as well as some algebraic quantities like the normal vector and the curvature at the interface.In a nutshell, the resolution of a two-fluid problem is summarized by the steps involves thefollowing ingredients:– solving incompressible Navier-Stokes equations by the first order Lagrange-Galerkin method;– geometrical treatment to evaluate the surface tension basing on the explicit discretisation of the interface;– solving the level set advection by method of characteristics; – the techniques of mesh adaptation.It is obvious that no numerical method is completely exact in solving the PDE problemat hand, hence, we need a discretized computational domain. However, the accuracy of numericalsolutions or the mass loss/gain can generally be improved with mesh refinement. The question thatarises is related to where and how to refine the mesh. At each time, our mesh adaptation producesthe adapted mesh based on the geometric properties of the interface and the physical properties ofthe fluid, simply speaking, only one adapted mesh at each time step to assume both the resolutionof Navier-Stokes and the advection equations. It answers to the need for an accurate representationof the interface and an accurate approximation of the velocity of fluids with a minimal number ofelements, then decreasing the amount of computational time. Some results of the classical examples for both problems of monofluid and bifluid flows as : lid-driven cavity, rising bubble, coalescence of two bubbles, and Rayleigh-Taylor instability are investigated in two and three dimensions.The second part of this thesis is related to shape optimization in fluid mechanics. We construct a numerical scheme using level set method and mesh adaptation in the context of Stokes systems. The computation of the sensitivity of objective function is related to the Hadamard’s boundary variation method and the shape derivatives is computed by Céa’s formal method. A numerical example with theobjective function of energy dissipation is presented to assess the efficiency and the reliability of theproposed scheme.
|
7 |
Intégrateurs temporels basés sur la resommation des séries divergentes : applications en mécanique / Time integrators based on divergent series resummation : applications in mechanicsDeeb, Ahmad 17 December 2015 (has links)
Les systèmes dynamiques qui évoluent sur un grand intervalle de temps (dynamique moléculaire, prédiction astronomique, turbulence...) occupent une place importante dans le domaine de la science de l'ingénieur. Leur résolution numérique constitue, jusqu'à l'heure actuelle, un défi. En effet, la simulation de la solution nécessite un solveur non seulement rapide mais aussi qui respecte les propriétés physiques du problème, pour garantir la stabilité. Dans cette thèse, on se propose d'étudier, vis-à-vis de cette problématique, un schéma d'intégration temporelle basée sur la décomposition de la solution en série temporelle, suivie de la technique de resommation de Borel des séries divergentes. On analyse alors la rapidité du schéma sur des problèmes modèles. Ensuite, on montre sa capacité à préserver la structure des équations (symplecticité, iso-spectralité, conservation de l'énergie...) à un ordre arbitrairement élevé. Par la suite, on applique le schéma à la résolution d'équations aux dérivées partielles issues de la mécanique, dont les équations de la chaleur, de Burgers et de Navier-Stokes bidimensionnelles. Pour cela, on associe le schéma à une méthode de discrétisation par éléments finis en espace. Enfin, dans le but de rendre l'algorithme plus robuste, on s'intéresse à la représentation de la somme de Borel par une série de factorielle généralisée. / Dynamical systems which evolve in a large time interval (molecular dynamic, astronomical prediction, turbulence…) take an important place in engineering science. Their numerical resolution has so far constituted a challenge. Indeed, the simulation of the solution requires a solver which is not only fast but also respects the physical properties of the problem, to ensure the stability. In this thesis, we propose to study, regarding this issue, a time integration scheme based on the decomposition of the solution into time series, followed by Borel's resummation technique of divergent series. We analyse the speed of scheme on model problems. Next, we show its capability to preserve the structure of the equation (symplecticity, iso-spectrality, conservation of energy…) up to an arbitrary high order. Thereafter, we use the scheme to resolve partial differential equations coming from mechanics, including the two-dimensional heat equation, Burger’s equation and the Navier-Stokes equation. To this aim, we choose a finite element method for space discretisation. Finally, and in order to make the algorithm more robust, we are interested in the representation of the Borel sum by a generalized factorials series.
|
Page generated in 0.128 seconds