• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rotation à long terme des corps célestes et application à Cérès et Vesta / Long-term rotation of celestial bodies and application to Ceres and Vesta

Vaillant, Timothée 06 July 2018 (has links)
Le sujet de cette thèse est l'étude de la rotation à long terme des corps célestes.La première partie est consacrée à l’étude de la rotation à long terme de Cérès et Vesta, les deux corps les plus massifs de la ceinture principale d’astéroïdes. Ils sont l’objet d’étude de la sonde spatiale Dawn, qui a permis de déterminer précisément les caractéristiques physiques et de rotation nécessaires au calcul de leurs rotations. La distribution de glace sous et à la surface de Cérès dépend du mouvement de son axe de rotation par le biais de l’obliquité, inclinaison de l’équateur sur l’orbite. Les rotations de Cérès et Vesta étant rapides, l’évolution à long terme des axes de rotation de Cérès et Vesta a été obtenue à l'aide d'une intégration symplectique des équations de la rotation, où une moyenne a été réalisée sur la rotation propre rapide. La stabilité des axes de rotation de Cérès et Vesta a été étudiée en fonction des paramètres de la rotation avec un modèle séculaire semi-analytique, qui a permis de montrer que les axes de rotation ne présentaient pas de caractère chaotique.La seconde partie concerne le développement d'intégrateurs symplectiques dédiés au corps solide. L'intégration de la rotation propre d'un corps solide nécessite d’intégrer les équations issues du hamiltonien du corps solide libre. Ce hamiltonien est certes intégrable et présente une solution explicite nécessitant l’usage des fonctions elliptiques de Jacobi, cependant le coût numérique de ces fonctions est élevé. Lorsque le hamiltonien du corps solide libre est couplé avec une énergie potentielle, l’orientation du corps doit être calculée à chaque pas d’intégration, ce qui augmente le temps de calcul. Des intégrateurs symplectiques ont ainsi été précédemment proposés pour le corps solide libre. Dans ce travail, des intégrateurs spécifiques au corps solide ont été développés en utilisant les propriétés de l’algèbre de Lie du moment cinétique. / This thesis concerns the long-term rotation of celestial bodies.The first part is a study of the long-term rotation of Ceres and Vesta, the two heaviest bodies of the main asteroid belt. The spacescraft Dawn studied these two objects and determined the physical and rotational characteristics, which are necessary for the computation of their rotations. The ice distribution under and on the surface of Ceres depends on the evolution of the obliquity, which is the inclination of the equatorial plane on the orbital plane. As the rotations of Ceres and Vesta are fast, the long-term evolution of the spin axes of Ceres and Vesta was obtained by realizing a symplectic integration of the equations of the rotation averaged on the fast proper rotation. The stability of the spin axes of Ceres and Vesta was studied with respect to the parameters of the rotation with a secular and semi-analytical model, which allowed to show that the spin axes are not chaotic.The second part concerns the development of symplectic integrators dedicated to the rigid body. The integration of the proper rotation of a rigid body needs to integrate the equations given by the Hamiltonian of the free rigid body. This Hamiltonian is integrable and presents an explicit solution using the Jacobi elliptic functions. However, the numerical cost of these functions is high. When the Hamiltonian of the free rigid body is coupled to a potential energy, the orientation of the body is needed at each step, which increases the computation time. Symplectic integrators were then previously proposed for the free rigid body. In this work, symplectic integrators dedicated to the rigid body were developed using the properties of the Lie algebra of the angular momentum.
2

Étude d'intégrateurs géométriques pour des équations différentielles

Vilmart, Gilles 01 December 2008 (has links) (PDF)
Le sujet de la thèse est l'étude et la construction de méthodes numériques géométriques pour les équations différentielles, qui préservent des propriétés géométriques du flot exact, notamment la symétrie, la symplecticité des systèmes hamiltoniens, la conservation d'intégrales premières, la structure de Poisson, etc.<br />Dans la première partie, on introduit une nouvelle approche de construction d'intégrateurs numériques géométriques d'ordre élevé en s'inspirant de la théorie des équations différentielles modifiées. Le cas des méthodes développables en B-séries est spécifiquement analysé et on introduit une nouvelle loi de composition sur les B-séries. L'efficacité de cette approche est illustrée par la construction d'un nouvel intégrateur géométrique d'ordre élevé pour les équations du mouvement d'un corps rigide. On obtient également une méthode numérique précise pour le calcul de points conjugués pour les géodésiques du corps rigide.<br />Dans la seconde partie, on étudie dans quelle mesure les excellentes performances des méthodes symplectiques, pour l'intégration à long terme en astronomie et en dynamique moléculaire, persistent pour les problèmes de contrôle optimal. On discute également l'extension de la théorie des équations modifiées aux problèmes de contrôle optimal.<br />Dans le même esprit que les équations modifiées, on considère dans la dernière partie des méthodes de pas fractionnaire (splitting) pour les systèmes hamiltoniens perturbés, utilisant des potentiels modifiés. On termine par la construction de méthodes de splitting d'ordre élevé avec temps complexes pour les équations aux dérivées partielles paraboliques, notamment les problèmes de réaction-diffusion en chimie.
3

Intégrateurs temporels basés sur la resommation des séries divergentes : applications en mécanique / Time integrators based on divergent series resummation : applications in mechanics

Deeb, Ahmad 17 December 2015 (has links)
Les systèmes dynamiques qui évoluent sur un grand intervalle de temps (dynamique moléculaire, prédiction astronomique, turbulence...) occupent une place importante dans le domaine de la science de l'ingénieur. Leur résolution numérique constitue, jusqu'à l'heure actuelle, un défi. En effet, la simulation de la solution nécessite un solveur non seulement rapide mais aussi qui respecte les propriétés physiques du problème, pour garantir la stabilité. Dans cette thèse, on se propose d'étudier, vis-à-vis de cette problématique, un schéma d'intégration temporelle basée sur la décomposition de la solution en série temporelle, suivie de la technique de resommation de Borel des séries divergentes. On analyse alors la rapidité du schéma sur des problèmes modèles. Ensuite, on montre sa capacité à préserver la structure des équations (symplecticité, iso-spectralité, conservation de l'énergie...) à un ordre arbitrairement élevé. Par la suite, on applique le schéma à la résolution d'équations aux dérivées partielles issues de la mécanique, dont les équations de la chaleur, de Burgers et de Navier-Stokes bidimensionnelles. Pour cela, on associe le schéma à une méthode de discrétisation par éléments finis en espace. Enfin, dans le but de rendre l'algorithme plus robuste, on s'intéresse à la représentation de la somme de Borel par une série de factorielle généralisée. / Dynamical systems which evolve in a large time interval (molecular dynamic, astronomical prediction, turbulence…) take an important place in engineering science. Their numerical resolution has so far constituted a challenge. Indeed, the simulation of the solution requires a solver which is not only fast but also respects the physical properties of the problem, to ensure the stability. In this thesis, we propose to study, regarding this issue, a time integration scheme based on the decomposition of the solution into time series, followed by Borel's resummation technique of divergent series. We analyse the speed of scheme on model problems. Next, we show its capability to preserve the structure of the equation (symplecticity, iso-spectrality, conservation of energy…) up to an arbitrary high order. Thereafter, we use the scheme to resolve partial differential equations coming from mechanics, including the two-dimensional heat equation, Burger’s equation and the Navier-Stokes equation. To this aim, we choose a finite element method for space discretisation. Finally, and in order to make the algorithm more robust, we are interested in the representation of the Borel sum by a generalized factorials series.

Page generated in 0.094 seconds