• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 13
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Automatické měření odstupu motorových vozidel / Automatic measurement of the motor vehicles distance.

Juřica, Lukáš January 2010 (has links)
This work deals with evaluation of equipment used for non-contact measurement of distance between vehicles. First are discussed various principles of measuring and after the selection of the most appropriate solution is proposed a detailed block diagram of modulation, demodulation and evaluation of the whole system and its mathematical description. Another part is devoted to describing the activities of the microprocessor controller, with which is controlled evaluation part and to the control program. It also analyzes the maximal attainable accuracy of measurement and the errors that affect it. The last part includes a circuit design and simulation of selected functional block, which is a coincidence /quadrature/ detector and construction documents for evaluation and demodulation part of the measurement instrument.
22

A 28 GHz Superregenerative Amplifier for FMCW Radar Reflector Applications in 45 nm SOI CMOS

Thayyil, Manu Viswambharan, Ghaleb, Hatem, Joram, Niko, Ellinger, Frank 22 August 2019 (has links)
This paper presents the design and characterization of a 28GHz integrated super-regenerative amplifier (SRA) in a 45 nm silicon on insulator (SOI) technology. The circuit is based on a complementary cross-coupled oscillator topology. The fabricated integrated circuit (IC) occupies an area of 0.67 mm 2 , and operates in a frequency range from 28.07GHz to 29.35 GHz. Characterization results show the minimum input sensitivity of the circuit, as -85 dBm and the input power level corresponding to the linear to logarithmic mode transition as -66.3 dBm. The measured output power delivered into a 100 Ω differential load is 1.1 dBm. The DC power consumption of the circuit is 10.6 mW. To the knowledge of the authors, the circuit has the best reported combined sensitivity and output power for an FMCW radar reflector implementation in CMOS.
23

Système de localisation indoor pour l'aide à la télésurveillance / Indoor localization system for telemonitoring

Kumar, Rupesch 17 December 2014 (has links)
Dans le cadre d'un suivi régulier de patients âgés pouvant souffrir de maladie d'Alzheimer, de nombreuses applications, dont leur localisation, s'avèrent utiles. Un système de localisation compact dédié à un environnement en intérieure est nécessaire. Cette thèse est dédiée à la réalisation d'un système de localisation pouvant répondre à cette attente. Le système développé (Indoor Localisation System, ILS) permet la localisation en trois dimensions d'un badge actif (Active Tag, AT) relativement à une ancre unique (Localisation Base Station, LBS). Le système utilise le principe de radar monopulse multistatique FMCW(Frequency Modulation Continuos Wave) et exploite la bande de fréquence Européenne ULB (6-8.5 GHz). La méthode employée pour l'ILS est une méthode goniométrique se basant sur la mesure conjointe de la différence de fréquence d'arrivée (FDoA) et la différence de phase d'arrivée (PDoA) pour l'estimation de la distance radiale et des angles de direction (azimut et élévation) de l'AT relativement au plan formé par l'ILS. Afin de valider ce système, un prototype d'ILS a été réalisé à Télécom ParisTech.L'objectif de cette thèse est d'obtenir un système de localisation compact permettant de localiser un badge actif avec une précision submétrique dédié pour les environnements en intérieurs exposés aux problèmes de multi-trajets. / Regular and accurate position monitoring of elderly suffering from dementia related problems (Alzheimer) may be required. To assist their monitoring a compact and a less complex indoor localization system is compulsary. This thesis is dedicated to design a Line-of-Sight (LoS) system to allow the indoor localization. The thesis aims to develop an Indoor Localization System (ILS) for three-dimension position estimates with respect to single Localization Base Station as an anchor. The designed ILS uses an Active-Tag (AT) as remote targel. The system uses the monopulse multistatic FMCW radar principle and covers the European UWB (6-8.5 GHz) frequency band. The designed ILS is based on the frequency-difference of arrival (FDoA) and the phase-difference-of-arrival (POoA) techniques for the radial-distance and the angles (azimuth and elevation) estimates. In order to validate this system, a prototype of the ILS is designed at Telecom ParisTech, France.The objective of the designed ILS is to have a localization system with an accuracy in few centimeters in Line-of-Sight condition. The system is designed to need a single anchor, and simultaneously addressing the indoor challenges such as multipaths, strong signal attenuations, reflections, etc.
24

Clutter Removal in Single Radar Sensor Reflection Data via Digital Signal Processing

Kazemisaber, Mohammadreza January 2020 (has links)
Due to recent improvements, robots are more applicable in factories and various production lines where smoke, fog, dust, and steam are inevitable. Despite their advantages, robots introduce new safety requirements when combined with humans. Radars can play a crucial role in this context by providing safe zones where robots are operating in the absence of humans. The goal of this Master’s thesis is to investigate different clutter suppression methods for single radar sensor reflection data via digital signal processing. This was done in collaboration with ABB Jokab AB, Sweden. The calculations and implementation of the digital signal processing algorithms are made with Octave. A critical problem is false detection that could possibly cause irreparable damage. Therefore, a safety system with an extremely low false alarm rate is desired to reduce costs and damages. In this project, we have studied four different digital low pass filters: moving average, multiple-pass moving average, Butterworth, and window-based filters. The results are compared, and it is ascertained that all the results are logically compatible, broadly comparable, and usable in this context.
25

Efficient FPGA SoC Processing Design for a Small UAV Radar

Newmeyer, Luke Oliver 01 April 2018 (has links)
Modern radar technology relies heavily on digital signal processing. As radar technology pushes the boundaries of miniaturization, computational systems must be developed to support the processing demand. One particular application for small radar technology is in modern drone systems. Many drone applications are currently inhibited by safety concerns of autonomous vehicles navigating shared airspace. Research in radar based Detect and Avoid (DAA) attempts to address these concerns by using radar to detect nearby aircraft and choosing an alternative flight path. Implementation of radar on small Unmanned Air Vehicles (UAV), however, requires a lightweight and power efficient design. Likewise, the radar processing system must also be small and efficient. This thesis presents the design of the processing system for a small Frequency Modulated Continuous Wave (FMCW) phased array radar. The radar and processing is designed to be light-weight and low-power in order to fly onboard a UAV less than 25 kg in weight. The radar algorithms for this design include a parallelized Fast Fourier Transform (FFT), cross correlation, and beamforming. Target detection algorithms are also implemented. All of the computation is performed in real-time on a Xilinx Zynq 7010 System on Chip (SoC) processor utilizing both FPGA and CPU resources. The radar system (excluding antennas) has dimensions of 2.25 x 4 x 1.5 in3, weighs 120 g, and consumes 8 W of power of which the processing system occupies 2.6 W. The processing system performs over 652 million arithmetic operations per second and is capable of performing the full processing in real-time. The radar has also been tested in several scenarios both airborne on small UAVs as well as on the ground. Small UAVs have been detected to ranges of 350 m and larger aircraft up to 800 m. This thesis will describe the radar design architecture, the custom designed radar hardware, the FPGA based processing implementations, and conclude with an evaluation of the system's effectiveness and performance.
26

Radar-based Environment Perception for Pre-Crash Safety Systems

Kamann, Alexander 15 January 2021 (has links)
In this thesis, methods for radar-based environment perception from the vehicle safety point of view are presented. The proposed methods comprise advanced topics of radar-based target detection and tracking in dynamic pre-crash scenarios, as well as ghost object identification. The problem of a wandering dominant scatter point on the target surface and corresponding challenge for accurate target tracking in low-range configurations is considered. The proposed method presents a procedure to estimate target wheel positions and corresponding bulk velocities to serve as fixed scatter points on the target surface. Input to this method are raw radar data. The technique spatially resolves the micro-Doppler signals, generated by the rotating wheels of the target vehicle, to determine characteristic scatter points on the target surface. A micro-Doppler parameter is defined to quantify detections that are with high probability generated by the rotating target wheels. This group of detections is processed to estimate the wheel position and corresponding bulk velocities of the target, referred to as wheel hypotheses. The proposed method is evaluated in dynamic driving scenarios, where the driver performs an emergency evading action to avoid a collision. Subsequently, the detected wheel hypotheses serve as input to a developed tracking framework, which is used to estimate the target object static and dynamic states. Since the number of detected wheel hypotheses varies, a random-finite-set-based measurement model is used to incorporate multiple wheel hypotheses detected for one extended target object. The tracking performance is evaluated in critical evading scenarios using real vehicles as the target object. In addition, the thesis emphasized the problem of ghost object generation due to multipath propagation in pre-crash scenarios. Radar sensors, perceiving the immediate vehicle environment, show an elevated ghost object presence due to a higher probability illuminating potential reflection surfaces, e.g., road boundaries or buildings. At times, these ghost objects appear to be on a collision trajectory with the ego vehicle, whereas the vehicles are in uncritical driving scenarios, e.g., an urban intersection. In real-world driving scenarios, one target object may generate multiple false-positive targets. Based on the propagation and reflection behavior of electromagnetic waves, a geometric multipath model is derived, illustrating the occurring multipath reflections on real-world surfaces, e.g., buildings or road-bounding barriers. The proposed geometric propagation model describes the relative positions of the false-positive reflections and is validated with extensive real radar data. A custom reflector target mounted on a platform, creating deterministic point targets as dominant backscatter centers of a vehicle body, validated the different multipath reflections and the overall accuracy of the model. Moreover, radar measurements of a vehicle during an intersection scenario proved relevance to multipath reflection behavior and confirmed the model assumptions. Third, the relevance of skid scenarios with high magnitudes of side slip angles in pre-crash phases is highlighted. A novel test methodology, to non-destructively transfer vehicles with mounted surround sensors in skid situations, is developed and a survey analyzing a state-of-the-art radar sensor revealed the potential to improve object tracking performance. A test vehicle, equipped with a state-of-the-art automotive radar sensor and a reference sensor, was tested in real skid situations using a kick plate and a standardized radar target. The test method utilizes the side slip angle as a criticality criterion, which may be adjusted by the kick plate. Subsequently, a novel, modified motion model is derived, estimating side slip angles in these skid driving situations. The contribution emphasizes the estimation of horizontal vehicle motion using the proposed model considering an additional lateral force applied to the vehicle rear axle. Based on these results, an Extended-Kalman filter is designed to estimate the target object relative position and velocity in skid scenarios. The evaluation includes both the tracking and side slip angle estimations in real car tests using the above-mentioned test method.
27

Time Domain SAR Processing with GPUs for Airborne Platforms

Lagoy, Dustin 24 March 2017 (has links)
A time-domain backprojection processor for airborne synthetic aperture radar (SAR) has been developed at the University of Massachusetts’ Microwave Remote Sensing Lab (MIRSL). The aim of this work is to produce a SAR processor capable of addressing the motion compensation issues faced by frequency-domain processing algorithms, in order to create well focused SAR imagery suitable for interferometry. The time-domain backprojection algorithm inherently compensates for non-linear platform motion, dependent on the availability of accurate measurements of the motion. The implementation must manage the relatively high computational burden of the backprojection algorithm, which is done using modern graphics processing units (GPUs), programmed with NVIDIA’s CUDA language. An implementation of the Non-Equispaced Fast Fourier Transform (NERFFT) is used to enable efficient and accurate range interpolation as a critical step of the processing. The phase of time- domain processed imagery is dif erent than that of frequency-domain imagery, leading to a potentially different approach to interferometry. This general purpose SAR processor is designed to work with a novel, dual-frequency S- and Ka-band radar system developed at MIRSL as well as the UAVSAR instrument developed by NASA’s Jet Propulsion Laboratory. These instruments represent a wide range of SAR system parameters, ensuring the ability of the processor to work with most any airborne SAR. Results are presented from these two systems, showing good performance of the processor itself.
28

Radar-based Application of Pedestrian and Cyclist Micro-Doppler Signatures for Automotive Safety Systems

Held, Patrick 12 May 2022 (has links)
Die sensorbasierte Erfassung des Nahfeldes im Kontext des hochautomatisierten Fahrens erfährt einen spürbaren Trend bei der Integration von Radarsensorik. Fortschritte in der Mikroelektronik erlauben den Einsatz von hochauflösenden Radarsensoren, die durch effiziente Verfahren sowohl im Winkel als auch in der Entfernung und im Doppler die Messgenauigkeit kontinuierlich ansteigen lassen. Dadurch ergeben sich neuartige Möglichkeiten bei der Bestimmung der geometrischen und kinematischen Beschaffenheit ausgedehnter Ziele im Fahrzeugumfeld, die zur gezielten Entwicklung von automotiven Sicherheitssystemen herangezogen werden können. Im Rahmen dieser Arbeit werden ungeschützte Verkehrsteilnehmer wie Fußgänger und Radfahrer mittels eines hochauflösenden Automotive-Radars analysiert. Dabei steht die Erscheinung des Mikro-Doppler-Effekts, hervorgerufen durch das hohe Maß an kinematischen Freiheitsgraden der Objekte, im Vordergrund der Betrachtung. Die durch den Mikro-Doppler-Effekt entstehenden charakteristischen Radar-Signaturen erlauben eine detailliertere Perzeption der Objekte und können in direkten Zusammenhang zu ihren aktuellen Bewegungszuständen gesetzt werden. Es werden neuartige Methoden vorgestellt, die die geometrischen und kinematischen Ausdehnungen der Objekte berücksichtigen und echtzeitfähige Ansätze zur Klassifikation und Verhaltensindikation realisieren. Wird ein ausgedehntes Ziel (z.B. Radfahrer) von einem Radarsensor detektiert, können aus dessen Mikro-Doppler-Signatur wesentliche Eigenschaften bezüglich seines Bewegungszustandes innerhalb eines Messzyklus erfasst werden. Die Geschwindigkeitsverteilungen der sich drehenden Räder erlauben eine adaptive Eingrenzung der Tretbewegung, deren Verhalten essentielle Merkmale im Hinblick auf eine vorausschauende Unfallprädiktion aufweist. Ferner unterliegen ausgedehnte Radarziele einer Orientierungsabhängigkeit, die deren geometrischen und kinematischen Profile direkt beeinflusst. Dies kann sich sowohl negativ auf die Klassifikations-Performance als auch auf die Verwertbarkeit von Parametern auswirken, die eine Absichtsbekundung des Radarziels konstituieren. Am Beispiel des Radfahrers wird hierzu ein Verfahren vorgestellt, das die orientierungsabhängigen Parameter in Entfernung und Doppler normalisiert und die gemessenen Mehrdeutigkeiten kompensiert. Ferner wird in dieser Arbeit eine Methodik vorgestellt, die auf Grundlage des Mikro- Doppler-Profils eines Fußgängers dessen Beinbewegungen über die Zeit schätzt (Tracking) und wertvolle Objektinformationen hinsichtlich seines Bewegungsverhaltens offenbart. Dazu wird ein Bewegungsmodell entwickelt, das die nichtlineare Fortbewegung des Beins approximiert und dessen hohes Maß an biomechanischer Variabilität abbildet. Durch die Einbeziehung einer wahrscheinlichkeitsbasierten Datenassoziation werden die Radar-Detektionen ihren jeweils hervorrufenden Quellen (linkes und rechtes Bein) zugeordnet und eine Trennung der Gliedmaßen realisiert. Im Gegensatz zu bisherigen Tracking-Verfahren weist die vorgestellte Methodik eine Steigerung in der Genauigkeit der Objektinformationen auf und stellt damit einen entscheidenden Vorteil für zukünftige Fahrerassistenzsysteme dar, um deutlich schneller auf kritische Verkehrssituationen reagieren zu können.:1 Introduction 1 1.1 Automotive environmental perception 2 1.2 Contributions of this work 4 1.3 Thesis overview 6 2 Automotive radar 9 2.1 Physical fundamentals 9 2.1.1 Radar cross section 9 2.1.2 Radar equation 10 2.1.3 Micro-Doppler effect 11 2.2 Radar measurement model 15 2.2.1 FMCW radar 15 2.2.2 Chirp sequence modulation 17 2.2.3 Direction-of-arrival estimation 22 2.3 Signal processing 25 2.3.1 Target properties 26 2.3.2 Target extraction 28 Power detection 28 Clustering 30 2.3.3 Real radar data example 31 2.4 Conclusion 33 3 Micro-Doppler applications of a cyclist 35 3.1 Physical fundamentals 35 3.1.1 Micro-Doppler signatures of a cyclist 35 3.1.2 Orientation dependence 36 3.2 Cyclist feature extraction 38 3.2.1 Adaptive pedaling extraction 38 Ellipticity constraints 38 Ellipse fitting algorithm 39 3.2.2 Experimental results 42 3.3 Normalization of the orientation dependence 44 3.3.1 Geometric correction 44 3.3.2 Kinematic correction 45 3.3.3 Experimental results 45 3.4 Conclusion 47 3.5 Discussion and outlook 47 4 Micro-Doppler applications of a pedestrian 49 4.1 Pedestrian detection 49 4.1.1 Human kinematics 49 4.1.2 Micro-Doppler signatures of a pedestrian 51 4.1.3 Experimental results 52 Radially moving pedestrian 52 Crossing pedestrian 54 4.2 Pedestrian feature extraction 57 4.2.1 Frequency-based limb separation 58 4.2.2 Extraction of body parts 60 4.2.3 Experimental results 62 4.3 Pedestrian tracking 64 4.3.1 Probabilistic state estimation 65 4.3.2 Gaussian filters 67 4.3.3 The Kalman filter 67 4.3.4 The extended Kalman filter 69 4.3.5 Multiple-object tracking 71 4.3.6 Data association 74 4.3.7 Joint probabilistic data association 80 4.4 Kinematic-based pedestrian tracking 84 4.4.1 Kinematic modeling 84 4.4.2 Tracking motion model 87 4.4.3 4-D radar point cloud 91 4.4.4 Tracking implementation 92 4.4.5 Experimental results 96 Longitudinal trajectory 96 Crossing trajectory with sudden turn 98 4.5 Conclusion 102 4.6 Discussion and outlook 103 5 Summary and outlook 105 5.1 Developed algorithms 105 5.1.1 Adaptive pedaling extraction 105 5.1.2 Normalization of the orientation dependence 105 5.1.3 Model-based pedestrian tracking 106 5.2 Outlook 106 Bibliography 109 List of Acronyms 119 List of Figures 124 List of Tables 125 Appendix 127 A Derivation of the rotation matrix 2.26 127 B Derivation of the mixed radar signal 2.52 129 C Calculation of the marginal association probabilities 4.51 131 Curriculum Vitae 135 / Sensor-based detection of the near field in the context of highly automated driving is experiencing a noticeable trend in the integration of radar sensor technology. Advances in microelectronics allow the use of high-resolution radar sensors that continuously increase measurement accuracy through efficient processes in angle as well as distance and Doppler. This opens up novel possibilities in determining the geometric and kinematic nature of extended targets in the vehicle environment, which can be used for the specific development of automotive safety systems. In this work, vulnerable road users such as pedestrians and cyclists are analyzed using a high-resolution automotive radar. The focus is on the appearance of the micro-Doppler effect, caused by the objects’ high kinematic degree of freedom. The characteristic radar signatures produced by the micro-Doppler effect allow a clearer perception of the objects and can be directly related to their current state of motion. Novel methods are presented that consider the geometric and kinematic extents of the objects and realize real-time approaches to classification and behavioral indication. When a radar sensor detects an extended target (e.g., bicyclist), its motion state’s fundamental properties can be captured from its micro-Doppler signature within a measurement cycle. The spinning wheels’ velocity distributions allow an adaptive containment of the pedaling motion, whose behavior exhibits essential characteristics concerning predictive accident prediction. Furthermore, extended radar targets are subject to orientation dependence, directly affecting their geometric and kinematic profiles. This can negatively affect both the classification performance and the usability of parameters constituting the radar target’s intention statement. For this purpose, using the cyclist as an example, a method is presented that normalizes the orientation-dependent parameters in range and Doppler and compensates for the measured ambiguities. Furthermore, this paper presents a methodology that estimates a pedestrian’s leg motion over time (tracking) based on the pedestrian’s micro-Doppler profile and reveals valuable object information regarding his motion behavior. To this end, a motion model is developed that approximates the leg’s nonlinear locomotion and represents its high degree of biomechanical variability. By incorporating likelihood-based data association, radar detections are assigned to their respective evoking sources (left and right leg), and limb separation is realized. In contrast to previous tracking methods, the presented methodology shows an increase in the object information’s accuracy. It thus represents a decisive advantage for future driver assistance systems in order to be able to react significantly faster to critical traffic situations.:1 Introduction 1 1.1 Automotive environmental perception 2 1.2 Contributions of this work 4 1.3 Thesis overview 6 2 Automotive radar 9 2.1 Physical fundamentals 9 2.1.1 Radar cross section 9 2.1.2 Radar equation 10 2.1.3 Micro-Doppler effect 11 2.2 Radar measurement model 15 2.2.1 FMCW radar 15 2.2.2 Chirp sequence modulation 17 2.2.3 Direction-of-arrival estimation 22 2.3 Signal processing 25 2.3.1 Target properties 26 2.3.2 Target extraction 28 Power detection 28 Clustering 30 2.3.3 Real radar data example 31 2.4 Conclusion 33 3 Micro-Doppler applications of a cyclist 35 3.1 Physical fundamentals 35 3.1.1 Micro-Doppler signatures of a cyclist 35 3.1.2 Orientation dependence 36 3.2 Cyclist feature extraction 38 3.2.1 Adaptive pedaling extraction 38 Ellipticity constraints 38 Ellipse fitting algorithm 39 3.2.2 Experimental results 42 3.3 Normalization of the orientation dependence 44 3.3.1 Geometric correction 44 3.3.2 Kinematic correction 45 3.3.3 Experimental results 45 3.4 Conclusion 47 3.5 Discussion and outlook 47 4 Micro-Doppler applications of a pedestrian 49 4.1 Pedestrian detection 49 4.1.1 Human kinematics 49 4.1.2 Micro-Doppler signatures of a pedestrian 51 4.1.3 Experimental results 52 Radially moving pedestrian 52 Crossing pedestrian 54 4.2 Pedestrian feature extraction 57 4.2.1 Frequency-based limb separation 58 4.2.2 Extraction of body parts 60 4.2.3 Experimental results 62 4.3 Pedestrian tracking 64 4.3.1 Probabilistic state estimation 65 4.3.2 Gaussian filters 67 4.3.3 The Kalman filter 67 4.3.4 The extended Kalman filter 69 4.3.5 Multiple-object tracking 71 4.3.6 Data association 74 4.3.7 Joint probabilistic data association 80 4.4 Kinematic-based pedestrian tracking 84 4.4.1 Kinematic modeling 84 4.4.2 Tracking motion model 87 4.4.3 4-D radar point cloud 91 4.4.4 Tracking implementation 92 4.4.5 Experimental results 96 Longitudinal trajectory 96 Crossing trajectory with sudden turn 98 4.5 Conclusion 102 4.6 Discussion and outlook 103 5 Summary and outlook 105 5.1 Developed algorithms 105 5.1.1 Adaptive pedaling extraction 105 5.1.2 Normalization of the orientation dependence 105 5.1.3 Model-based pedestrian tracking 106 5.2 Outlook 106 Bibliography 109 List of Acronyms 119 List of Figures 124 List of Tables 125 Appendix 127 A Derivation of the rotation matrix 2.26 127 B Derivation of the mixed radar signal 2.52 129 C Calculation of the marginal association probabilities 4.51 131 Curriculum Vitae 135
29

Evaluation of FMCW Radar Jamming Sensitivity

Snihs, Ludvig January 2023 (has links)
In this work, the interference sensitivity of an FMCW radar has been evaluated by studying the impact on a simulated detection chain. A commercially available FMCW radar was first characterized and its properties then laid the foundation for a simulation model implemented in Matlab. Different interference methods have been studied and a selection was made based on the results of previous research. One method aims to inject a sufficiently large amount of energy in the form of pulsed noise into the receiver. The second method aims to deceive the radar into seeing targets that do not actually exist by repeating the transmitted signal and thus giving the radar a false picture of its surroundings. The results show that if it is possible to synchronize with the transmitted signal then repeater jamming can be effective in misleading the radar. In one scenario the false target even succeeded in hiding the real target by exploiting the Cell-Averaging CFAR detection algorithm. The results suggests that without some smart countermeasures the radar has no way of distinguishing a coherent repeater signal, but just how successful the repeater is in creating a deceptive environment is highly dependent on the detection algorithm used. Pulsed noise also managed to disrupt the radar and with a sufficiently high pulse repetition frequency the detector could not find any targets despite a simulated object in front of the radar. On the other hand, a rather significant effective radiated power level was required for the pulse train to achieve any meaningful effect on the radar, which may be due to an undersampled signal in the simulation. It is therefore difficult based on this work to draw any conclusions about how suitable pulsed noise is in a non-simulated interference context and what parameter values to use.

Page generated in 0.0584 seconds