211 |
Exploration géophysique des processus de fracturation et de réactivation dans les carbonates à l'échelle métrique / Geophysical exploration of the fracturing and reactivation processes in carbonates at the meter scaleMatonti, Christophe 02 October 2015 (has links)
Le but de ce travail est de comprendre les relations entre la déformation et la diagenèse dans les carbonates. Pour cela, l’échelle du m au dam est adéquate car elle permet de séparer les effets matriciels, des fractures et des failles. Celle-ci est sous la résolution de la sismique, donc peu de données géophysiques et diagénétiques spatiale et quantitatives sont disponibles, le plus souvent limitées aux données 1D de puit.Nous avons choisi 4 affleurements présentant des hétérogénéités et des intensités de déformation et de diagenèse diverses. Un protocole multi-échelle et multidisciplinaire a été développé, comprenant de la géophysique à l’échelle du cm au dam, de la diagenèse structurale et de la géochimie sur les ciments de fracture. Nous montrons un fort effet d’échelle entre les Vp en laboratoire et à l’affleurement dû à des hétérogénéités sédimentaire, d’enfouissement et structurale, qui conduisent à différents motifs géostatistiques.Les fractures ont l’effet le plus fort sur les Vp, modulé par leur cimentation, et qui peut entièrement effacer la signature initiale du faciès. La réactivation des fractures induit une anisotropie directionnelle de 10% due à des changements dans le remplissage des fractures, caractérisés par de multiples phases de cimentation, broyage et dissolution.Dans les zones de faille, l’anisotropie sismique est amplifiée, conduisant à un fort affaiblissement de la roche au cisaillement et à une diminution de Vp autour de la faille. Les données géochimiques tracent plusieurs flux de fluides diagénétiques et soulignent les fortes interactions entre l’évolution de la perméabilité, la diagenèse structurale et la signature géophysique des carbonates. / The aim of this work was to understand the relationships between deformations and diagenesis in carbonates. The relevant scale to study it may be the m to dkm scale which allows individualizing fracture, fault and matrix effects. This scale is under the seismic resolution, so few quantitative diagenetic and geophysical spatial data are available, mainly constrained to 1D borehole.Therefore, we selected 4 dkm scale outcrops displaying various heterogeneities and intensities of deformation and diagenesis. We developed a multidisciplinary/multiscale protocol including geophysics from cm to dkm scale along with structural diagenesis study and geochemical measurements on fractures cements. We found a strong scale effect between laboratory and outcrop Vp due to sedimentary, burial and structural heterogeneities that lead to different geostatistical patterns. Fractures have the strongest effect on Vp, being modulated by their cementation and can erase the initial facies acoustic signature. The fracture reactivation induce a 10% Vp directional anisotropy due to microscale changes in the fractures infillings characterized by multiple cementation, crushing and dissolution phases. In fault-zones the seismic anisotropy magnitude is amplified, leading to a strong directional rock shear weakening and a Vp decrease around the fault, caused by higher discontinuities aperture and brecciation. Geochemical data indicate that the Vp signature evolution is linked to different diagenetic fluids flow origins occurring during each deformation phase. This underlines the strong interplay between permeability evolution, structural diagenesis and geophysical signature in carbonates.
|
212 |
No Significant Bone Resorption after Open Treatment of Mandibular Condylar Head Fractures in the Medium-TermNeuhaus, Michael-Tobias, Gellrich, Nils-Claudius, Sander, Anna Katharina, Lethaus, Bernd, Halama, Dirk, Zimmerer, Rüdiger M. 02 October 2023 (has links)
Open treatment of condylar head fractures (CHF) is considered controversial. In this retrospective cohort study our primary objective was therefore to assess bone resorption and remodeling as well as patients function after open treatment of CHF in a medium-term follow-up (15.1 ± 2.2 months). We included 18 patients with 25 CHF who underwent open reduction and internal fixation, between 2016 and 2021, in our analysis. The clinical data and cone-beam computed tomography (CBCT) datasets were analyzed. The condylar processes were segmented in the postoperative (T1) and follow-up (T2) CBCT scans. Volumetric and linear bone changes were the primary outcome variables, measured by using a sophisticated 3D-algorithm. The mean condylar head volume decreased non-significantly from 3022.01 ± 825.77 mm3 (T1) to 2878.8 ± 735.60 mm3 (T2; p = 0.52). Morphological alterations indicated remodeling and resorption. The pre-operative maximal interincisal opening (MIO) was 19.75 ± 3.07 mm and significantly improved to 40.47 ± 1.7 mm during follow-up (p = 0.0005). Low rates of postoperative complications were observed. Open reduction of CHF leads to good clinical outcomes and low rates of medium-term complications. This study underlines the feasibility and importance of open treatment of CHF and may help to spread its acceptance as the preferred treatment option.
|
213 |
Safety and practicality of using the proximal tibia as a source of autogenous cancellous bone in the horseBoero, Michael J January 2011 (has links)
Photocopy of typescript. / Digitized by Kansas Correctional Industries
|
214 |
Normal blood supply to equine radii and its response to various cerclage devicesNyrop, Karen Ann. January 1984 (has links)
Call number: LD2668 .T4 1984 N97 / Master of Science
|
215 |
Laxative use and incident falls, fractures and change in bone mineral density in postmenopausal women: results from the Women's Health InitiativeHaring, Bernhard, Pettinger, Mary, Bea, Jennifer, Wactawski-Wende, Jean, Carnahan, Ryan, Ockene, Judith, Wyler, von Ballmoos, Wallace, Robert, Wassertheil-Smoller, Sylvia January 2013 (has links)
BACKGROUND:Laxatives are among the most widely used over-the-counter medications in the United States but studies examining their potential hazardous side effects are sparse. Associations between laxative use and risk for fractures and change in bone mineral density BMD] have not previously been investigated.METHODS:This prospective analysis included 161,808 postmenopausal women (8907 users and 151,497 nonusers of laxatives) enrolled in the WHI Observational Study and Clinical Trials. Women were recruited from October 1, 1993, to December 31, 1998, at 40 clinical centers in the United States and were eligible if they were 50 to 79 years old and were postmenopausal at the time of enrollment. Medication inventories were obtained during in-person interviews at baseline and at the 3-year follow-up visit on everyone. Data on self-reported falls (greater than or equal to]2), fractures (hip and total fractures) were used. BMD was determined at baseline and year 3 at 3 of the 40 clinical centers of the WHI.RESULTS:Age-adjusted rates of hip fractures and total fractures, but not for falls were similar between laxative users and non-users regardless of duration of laxative use. The multivariate-adjusted hazard ratios for any laxative use were 1.06 (95% confidence interval CI], 1.03-1.10) for falls, 1.02 (95% CI, 0.85-1.22) for hip fractures and 1.01 (95% CI, 0.96-1.07) for total fractures. The BMD levels did not statistically differ between laxative users and nonusers at any skeletal site after 3-years intake.CONCLUSION:These findings support a modest association between laxative use and increase in the risk of falls but not for fractures. Its use did not decrease bone mineral density levels in postmenopausal women. Maintaining physical functioning, and providing adequate treatment of comorbidities that predispose individuals for falls should be considered as first measures to avoid potential negative consequences associated with laxative use.
|
216 |
Development of Methods and Guidelines for Upper Extremity Injury in Car AccidentsCyrén, Oscar, Harryson, Moa January 2016 (has links)
The project focus has been development of guidelines and methods for upper extremity injury reduction in car crashes. The safety of the central body parts improves which indicates the need to develop methods for avoiding non-life threatening injuries such as fracture of the arms. The purpose of the project was to study the injury mechanisms for the upper extremity in car crashes, and the aim has been to propose methods to reduce the injuries. The project focuses on adult occupants inside the vehicles front seat, and frontal and side impacts. The procedure began with understanding and identifying the injury mechanisms. Studies show that most fractures occur on the forearm (radius and ulna) and on the wrists and hands. To determine which injury mechanisms that were most frequent, data were collected from 29 computer simulations with 29 different crash scenarios. The most common kind of impact was the medial part of the wrist in the central part of the instrument panel, combined with the impact of the elbow in the center consol. The results of the simulations created a basis for the method of the component test, with focus on the injury mechanism i.e. the forward movement of the arms into the instrument panel. The component test consisted of a test rig, on which was mounted with a measuring arm of a 50th percentile male dummy. The arm dropped into a block of expanded polypropylene (EPP-block) for observation and study, and with following variable parameters: the impact angle of the surface, velocity and position of the wrist. Then also an instrumented measuring arm from a 5th percentile female dummy was released into an instrument panel. The project contributes to knowledge about the injury mechanism of the upper extremity in car crashes. The most frequent injury mechanism is a forward movement of the arms resulting in an impact with the interior structure of the car. The most frequent injured region is the distal part of the upper extremity. The project has developed and suggested the first step to a test method for the specific injury mechanism. There is a need of more research on how impact angles and velocity affect the violence on the arm.
|
217 |
Μοντελοποίηση πώρωσης οστών με τη μέθοδο των πεπερασμένων όγκων / Modeling of bone fracture healing with finite volume methodΠοδαροπούλου, Αιμιλία 26 July 2013 (has links)
Η διαδικασία πώρωσης καταγμάτων των οστών συμπεριλαμβάνει την ενεργοποίηση και αλληλεπίδραση διαφόρων κυττάρων, που ρυθμίζονται από βιοχημικά και μηχανικά σήματα. Στην παρούσα διπλωματική εργασία μελετάται το μαθηματικό μοντέλο πώρωσης καταγμάτων οστών, συμπεριλαμβανομένου μόνο των βιοχημικών ερεθισμάτων. Το μοντέλο αυτό, που αναπτύχθηκε αρχικά από τους Geris L. et al. (2008), περιλαμβάνει μία σειρά μερικών μη γραμμικών διαφορικών εξισώσεων που περιγράφουν την χωροχρονική εξέλιξη των συγκεντρώσεων και των πυκνοτήτων των κυτταρικών τύπων, των τύπων εξωκυττάριας θεμέλιας ουσίας και των αυξητικών παραγόντων που συμμετέχουν στη διαδικασία πώρωσης. Η προσομοίωση του μαθηματικού μοντέλου πώρωσης οστών έγινε μέσω υπολογιστικού κώδικα πεπερασμένων όγκων στο Matlab.
Ιδιαίτερη έμφαση δίνεται στην διαδικασία της αγγειογένεσης που λαμβάνει χώρα κατά την πώρωση των καταγμάτων και αποτελεί σημαντικό παράγοντα για την αποκατάσταση των οστών και την πλήρη επαναφορά τους στην αρχική κατάσταση. Για την καλύτερη κατανόηση των διαδικασιών αγγειογένεσης, εκτός από την μελέτη του μαθηματικού μοντέλου της πώρωσης των οστών, πραγματοποιήθηκε μελέτη των βιολογικών διαδικασιών επούλωσης δερματικής πληγής και προσομοίωση με υπολογιστικό κώδικα στο Matlab του απλοποιημένου μαθηματικού μοντέλου της αγγειογένεσης στην επούλωση δερματικών πληγών. / The process of fracture healing involves the action and interaction of many cells, regulated by biochemical and mechanical signals. This postgraduate dissertation studies a mathematical bone fracture healing model for the case of normal fracture healing including only the biochemical factors (a bioregulatory model). The mathematical model, which was originally established by Geris L. et al. (2008), consists of a system of nonlinear partial differential equations describing the spatiotemporal evolution of concentrations and densities of the cell types, extracellular matrix types and growth factors indispensable to the healing process. The simulation of mathematical model was held by a computational finite volume code in Matlab.
Particular emphasis is given to the process of angiogenesis, which occurs during fracture healing and is a key factor for bone repair and restore of the original state. For a better understanding of angiogenesis processes, a study in biological processes for dermal wound healing was held and a simulation of a simplified mathematical model of angiogenesis in healing dermal wounds by a computational code in Matlab.
|
218 |
Clinical morbidity of resorbable plates and screws for internal fixation in orthognathic surgeryChow, Lop-keung, Raymond., 周立強. January 2003 (has links)
published_or_final_version / Dentistry / Master / Master of Dental Surgery
|
219 |
Prediction of pathological fracture risk due to metastatic bone defectusing finite element methodLai, Wang-to, Derek., 黎弘道. January 2006 (has links)
published_or_final_version / abstract / Orthopaedics and Traumatology / Master / Master of Philosophy
|
220 |
Fracture Growth Kinematics in Tight Sandstone ReservoirsAlzayer, Yaser Abdullah 27 October 2014 (has links)
Opening-mode fractures—joints and veins—are widespread structures in sedimentary rocks even in slightly deformed and flat-lying sequences. Understanding the growth and connectivity of fractures in low permeability sandstone reservoirs is essential for optimal hydrocarbon exploitation. In a linear elastic fracture mechanics framework, it is generally assumed that fractures widen in aperture while they propagate in length or height. However, it is also conceivable that a phase of proportional aperture to length or height growth is followed by a phase of aperture growth with relatively slow or arrested tip propagation. Slow propagation relative to aperture opening can occur by non-elastic deformation processes or if the material elastic properties change over time. Fracture propagation in length or height can be halted by material strength heterogeneities. To test for concurrent length versus aperture growth of these fractures, I reconstructed the crack-seal opening history for multiple cement bridges sampled at different distances from the tip of three opening-mode fractures in Travis Peak Sandstone of the SFOT-1 well, East Texas. Crack-seal cement bridges have been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement that bridges the fractures. Crack-seal cement textures were imaged using a scanning electron microscope with a cathodoluminescence detector, and the number and thickness of crack-seal cement increments determined. Trends in crack-seal increments number and thickness are consistent with fast initial fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Cumulative fracture opening displacement based on palinspastic reconstruction of two cement bridges was compared to analytical solutions for a stationary and a propagating fracture aperture as a function of position relative to the fracture tip in an elastic medium. Based on this comparison, I conclude that the crack-seal cement record reflects largely the phase of dominant aperture growth and subcritical fracture propagation under constant loading stress. / text
|
Page generated in 0.0309 seconds