Spelling suggestions: "subject:"factorization c.method"" "subject:"factorization 20method""
1 |
Kraštinio uždavinio paprastajai antros eilės diferencialinei lygčiai suvedimas į integralinę lygtį / Boundary problem ordinary second order differential equation entering into the integrated equationJocas, Aivaras 02 July 2012 (has links)
Baigiamajame darbe nagrinėjama paprastoji antros eilės diferencialinė lygtis. Jos sprendinių gavimui ir analizei naudojamas faktorizacijos metodas – ieškomosios funkcijos skaidymas dauginamaisiais bei kiti tradiciniai paprastųjų diferencialinių lygčių sprendimo metodai: nepriklausomo kintamojo keitimo metodas, konstantų varijavimo metodas. / In this work is analyzed second-order differential equation. I use factorization method and other traditional ordinary differential equations approaches as an example: independent variable exchange method, variation of constants method and direct integration, to find solutions of the equation.
|
2 |
Asymptotic and Factorization Analysis for Inverse Shape Problems in Tomography and Scattering TheoryGovanni Granados (18283216) 01 April 2024 (has links)
<p dir="ltr">Developing non-invasive and non-destructive testing in complex media continues to be a rich field of study (see e.g.[22, 28, 36, 76, 89] ). These types of tests have applications in medical imaging, geophysical exploration, and engineering where one would like to detect an interior region or estimate a model parameter. With the current rapid development of this enabling technology, there is a growing demand for new mathematical theory and computational algorithms for inverse problems in partial differential equations. Here the physical models are given by a boundary value problem stemming from Electrical Impedance Tomography (EIT), Diffuse Optical Tomography (DOT), as well as acoustic scattering problems. Important mathematical questions arise regarding existence, uniqueness, and continuity with respect to measured surface data. Rather than determining the solution of a given boundary value problem, we are concerned with using surface data in order to develop and implement numerical algorithms to recover unknown subregions within a known domain. A unifying theme of this thesis is to develop Qualitative Methods to solve inverse shape problems using measured surface data. These methods require very few a priori assumptions on the regions of interest, boundary conditions, and model parameter estimation. The counterpart to qualitative methods, iterative methods, typically require a priori information that may not be readily available and can be more computationally expensive. Qualitative Methods usually require more data.</p><p dir="ltr">This thesis expands the library of Qualitative Methods for elliptic problems coming from tomography and scattering theory. We consider inverse shape problems where our goal is to recover extended and small volume regions. For extended regions, we consider applying a modified version of the well-known Factorization Method [73]. Whereas for the small volume regions, we develop a Multiple Signal Classification (MUSIC)-type algorithm (see for e.g. [3, 5]). In all of our problems, we derive an imaging functional that will effectively recover the region of interest. The results of this thesis form part of the theoretical forefront of physical applications. Furthermore, it extends the mathematical theory at the intersection of mathematics, physics and engineering. Lastly, it also advances knowledge and understanding of imaging techniques for non-invasive and non-destructive testing.</p>
|
3 |
Charakterisierung eines Gebiets durch Spektraldaten eines Dirichletproblems zur Stokesgleichnung / Characterisation of domains by spectral data of a Dirichlet problem for the Stokes equationTsiporin, Viktor 20 January 2004 (has links)
No description available.
|
4 |
Spectral Methods for Direct and Inverse Scattering from Periodic StructuresNguyen, Dinh Liem 07 December 2012 (has links) (PDF)
The main topic of the thesis are inverse scattering problems of electromagnetic waves from periodic structures. We study first the direct problem and its numerical resolution using volume integral equation methods with a focus on the case of strongly singular integral operators and discontinuous coefficients. In a second investigation of the direct problem we study conditions on the material parameters under which well-posedness is ensured for all positive wave numbers. Such conditions exclude the existence of guided waves. The considered inverse scattering problem is related to shape identification. To treat this class of inverse problems, we investigate the so-called Factorization method as a tool to identify periodic patterns from measured scattered waves. In this thesis, these measurements are always related to plane incident waves. The outline of the thesis is the following: The first chapter is the introduction where we give the state of the art and new results of the topics studied in the thesis. The main content consists of five chapters, divided into two parts. The first part deals with the scalar case where the TM electromagnetic polarization is considered. In the second chapter we present the volume integral equation method with new results on Garding inequalities, convergence theory and numerical validation. The third chapter is devoted to the analysis of the Factorization method for the inverse scalar problem as well as some numerical experiments. The second part is dedicated to the study of 3-D Maxwell's equations. The fourth and fifth chapters are respectively generalizations of the results of the second and third ones to the case of Maxwell's equations. The sixth chapter contains the analysis of uniqueness conditions for the direct scattering problem, that is, absence of guided modes.
|
Page generated in 0.0747 seconds