• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des mécanismes activés par SPS dans un alliage TiAl et dans le système Ag-Zn / Study of the mechanisms activated by SPS in TiAl and Ag-Zn

Trzaska, Zofia 11 December 2015 (has links)
Ce travail porte sur les mécanismes de densification de systèmes métalliques par frittage flash (spark plasma sintering, SPS). Dans ce procédé actuellement en plein essor, la poudre est densifiée en présence de pulses de courant électrique très intenses. La cinétique de densification étant beaucoup plus rapide que par les techniques conventionnelles, de nombreuses études dans le monde portent actuellement sur l'effet des pulses de courant. Les hypothèses habituelles font état d'arcs et de plasma entre particules de poudre, de surchauffe localisée au niveau des ponts, d'électromigration et d'électroplasticité. Dans cette étude, nous avons considéré des conducteurs électriques, TiAl et Ag-Zn, pour mettre en évidence de tels effets. Des prélèvements de lames minces de microscopie électronique en transmission (MET) par faisceau d'ions focalisé au niveau des ponts entre particules de poudre de TiAl ont montré l'absence de surchauffes dans ces zones. Par ailleurs, les mécanismes de plasticité identifiés par MET étaient classiques. Des comparaisons avec le pressage à chaud, méthode conventionnelle de frittage, ont montré que le courant n'accélérait pas ces mécanismes. Des études modèles de déformation à chaud d'échantillons massifs ont montré que, dans les conditions thermomécaniques de sollicitation des particules de poudre, la plasticité impliquait des mécanismes de maclage, de glissement et de montée des dislocations, accompagnés de restauration et de recristallisation dynamiques, et que la cinétique résultante était contrôlée par la diffusion en volume de l'Al. Enfin, des études d'électromigration dans des couples de diffusion Ag-Zn ont montré l'absence d'influence de courants, même très intenses, sur la diffusion. Ces résultats, qui montrent l'absence d'électromigration et de phénomènes spécifiques aux ponts entre particules de poudre, apportent des réponses décisives sur les mécanismes controversés de densification par SPS. / This study reports on the densification mechanisms in metallic systems by the spark plasma sintering (SPS) technique. In this emerging powder metallurgy process, the powder is densified under pressure in presence of electric current pulses of high intensity. The sintering kinetics being much faster than that of the conventional techniques, many studies aim at exploring the potentially original mechanisms involved. Thus, sparks and plasma between powder particles, local overheating phenomena, electromigration and electroplasticity mechanisms, are postulated to occur during densification by SPS. In this study, electric conductors, TiAl and Ag-Zn, have been selected to evidence such effects. Focused ion beam lift-outs of transmission electron microscopy (TEM) thin foils at the necks between TiAl powder particles showed the absence of overheating in these zones, and that the plasticity mechanisms identified were classical. Comparisons with the classical hot pressing technique showed no acceleration of these mechanisms by the current. Model studies of deformation at high temperature of bulk samples indicated that, in the thermomechanical conditions of solicitation of the powder particles, plasticity occurred by mechanisms of twinning, glide and climb of the dislocations, accompanied by dynamic recovery and recrystallization, and that the resulting kinetics was controlled by volume diffusion of Al. Finally, electromigration studies in Ag-Zn diffusion couples showed that currents, even very intense, did not have an effect on diffusion mechanism. These results, showing no electromigration and no specific phenomena at the necks between the powder particles, provide decisive answers about the controversial SPS densification mechanisms.
2

Nanostructuration par FIB filtrée pour l'élaboration de nanostructures semi-conductrices organisées

Ruiz, Élise 30 November 2012 (has links)
Les nanofils (NFs), de par leur propriétés opto et nanoélectroniques sont devenus des éléments indispensable à la fabrication des dispositifs de la nanoélectronique. Le problème principal reste la reproductibilité en terme de densité de NFs, de diamètre... Cette thèse a pour but de développer grâce à la technologie FIB, un procédé permettant l'élaboration de NFs organisés et homogène en taille. / Due to their ease of fabrication and unique physical properties, semiconductor nanowires (NWs) have been proposed as building blocks for new nanoelectronic and photonic devices. Various processes have been developed to obtain large density of ultra-small NWs but naturally forms nanowires often lack reproducibility. We propose to develop a bottom-up (B-U)processes which is based on naturally formed NWs grown on a patterned substrate resulting from self-assembly of metallic clusters or exposition to a focused ion beam (FIB). The major goal consist to obtain organized and homogeneous NWs.
3

‘Tri-3D’ electron microscopy tomography by FIB, SEM and TEM : Application to polymer nanocomposites / Tomographie électronique ‘Tri-3D’ en FIB, SEM et TEM : Application aux nanocomposites polymère

Liu, Yang 25 July 2013 (has links)
Ce travail a porté sur la caractérisation et la quantification en 3D de la répartition de charges de différents types (nanoparticules, nanotubes, etc.) dans des matrices polymères. Nous nous focalisons sur les techniques de tomographie en microscopie électronique. Une approche multiple en tomographie électronique a été réalisée : la tomographie en FIB/MEB (faisceau d’ions focalisé/microscope électronique à balayage), la tomographie en MEB et la tomographie en MET (microscope électronique en transmission). Les nanocomposites polymère sont généralement élaborés aux fins d’améliorer les propriétés physiques (mécanique, électrique, etc.) du matériau polymère constituant la matrice, grâce à une addition contrôlée de charges nanométriques. La caractérisation de tels matériaux, et l’établissement de corrélations précises entre la microstructure et les propriétés d’usage, requièrent une approche tri-dimensionnelle. En raison de la taille nanométrique des charges, la microscopie électronique est incontournable. Deux systèmes de nanocomposite polymère ont été étudiés par une approche multiple de tomographie électronique : P(BuA-stat-S)/MWNTs (copolymère statistique poly (styrène-co-acrylate de butyl) renforcé par des nanotubes de carbone multi-parois), et P(BuA-stat-MMA)/SiO2 (copolymère statistique poly(butyl acrylate-co-methyl methacrylate) renforcé par des nanoparticules de silice). Par combinaison de divers techniques, la caractérisation et la quantification des nanocharges ont été possibles. En particulier, la taille, la fraction volumique et la distribution des charges ont été mesurées. Cette étude a ainsi fourni des informations en 3D qui contribuent à mieux comprendre les propriétés des nanocomposites. Une attention particulière a été portée aux artefacts et causes d’erreur possibles durant l’étape de traitement 3D. Nous avons également essayé de comparer les différentes techniques utilisées du point de vue de leurs avantages et inconvénients respectifs, en dégageant des possibilités d’amélioration future. / This work is focused on the characterization and quantification of the 3D distribution of different types of fillers (nanoparticles, nanotubes, etc.) in polymer matrices. We have essentially used tomography techniques in electron microscopy. Multiple approaches to electron tomography were performed: FIB-SEM (focused ion beam/scanning electron microscope) tomography, SEM tomography and TEM (transmission electron microscope) tomography. Polymer nanocomposites are basically synthesized in order to improve the physical properties (mechanical, electric, etc.) of the pure polymer constituting the matrix, by a controlled addition of fillers at the nanoscale. The characterization of such materials and the establishment of accurate correlations between the microstructure and the modified properties require a three-dimensional approach. According to the nanometric size of the fillers, electron microscopy techniques are needed. Two systems of polymer nanocomposites have been studied by multiple electron tomography approaches: P(BuA-stat-S)/MWNTs (statistical copolymer poly(styrene-co-butyl acrylate) reinforced by multi-walled carbon nanotubes) and P(BuA-stat-MMA)/SiO2 (statistical copolymer poly(butyl acrylate-co-methyl methacrylate) reinforced by silica nanoparticles). By combining various techniques, the characterization and the quantification of nanofillers were possible. In particular, statistics about size, distribution and volume fraction of the fillers were measured. This study has then provided 3D information, which contributes to a better understanding of properties of the nanocomposites. Attention has been paid to analyze carefully original data, and artifacts and causes of errors or inaccuracy were considered in the 3D treatments. We also attempted to compare benefits and drawbacks of all techniques employed in this study, and perspectives for future improvements have been proposed.
4

3D morphological and crystallographic analysis of materials with a Focused Ion Beam (FIB) / Analyse 3D morphologique et cristallographique des matériaux par microscopie FIB

Yuan, Hui 15 December 2014 (has links)
L’objectif principal de ce travail est d’optimise la tomographie par coupe sériée dans un microscope ‘FIB’, en utilisant soit l’imagerie électronique du microscope à balayage (tomographie FIB-MEB), soit la diffraction des électrons rétrodiffusés (tomographie dite EBSD 3D). Dans les 2 cas, des couches successives de l’objet d’étude sont abrasées à l’aide du faisceau ionique, et les images MEB ou EBSD ainsi acquises séquentiellement sont utilisées pour reconstruire le volume du matériau. A cause de différentes sources de perturbation incontrôlées, des dérives sont généralement présentes durant l'acquisition en tomographie FIB-MEB. Nous avons ainsi développé une procédure in situ de correction des dérives afin de garder automatiquement la zone d'intérêt (ROI) dans le champ de vue. Afin de reconstruction le volume exploré, un alignement post-mortem aussi précis que possible est requis. Les méthodes actuelles utilisant la corrélation-croisée, pour robuste que soit cette technique numérique, présente de sévères limitations car il est difficile, sinon parfois impossible de se fier à une référence absolue. Ceci a été démontré par des expériences spécifiques ; nous proposons ainsi 2 méthodes alternatives qui permettent un bon alignement. Concernant la tomographie EBSD 3D, les difficultés techniques liées au pilotage de la sonde ionique pour l'abrasion précise et au repositionnement géométrique correct de l’échantillon entre les positions d'abrasion et d’EBSD conduisent à une limitation importante de la résolution spatiale avec les systèmes commerciaux (environ 50 nm)3. L’EBSD 3D souffre par ailleurs de limites théoriques (grand volume d'interaction électrons-solide et effets d'abrasion. Une nouvelle approche, qui couple l'imagerie MEB de bonne résolution en basse tension, et la cartographie d'orientation cristalline en EBSD avec des tensions élevées de MEB est proposée. Elle a nécessité le développement de scripts informatiques permettant de piloter à la fois les opérations d’abrasion par FIB et l’acquisition des images MEB et des cartes EBSD. L’intérêt et la faisabilité de notre approche est démontrée sur un cas concret (superalliage de nickel). En dernier lieu, s’agissant de cartographie d’orientation cristalline, une méthode alternative à l’EBSD a été testée, qui repose sur l’influence des effets de canalisation (ions ou électrons) sur les contrastes en imagerie d’électrons secondaires. Cette méthode corrèle à des simulations la variation d’intensité de chaque grain dans une série d’images expérimentales obtenues en inclinant et/ou tournant l’échantillon sous le faisceau primaire. Là encore, la méthode est testée sur un cas réel (polycritsal de TiN) et montre, par comparaison avec une cartographie EBSD, une désorientation maximale d'environ 4° pour les angles d’Euler. Les perspectives d’application de cette approche, potentiellement beaucoup plus rapide que l’EBSD, sont évoquées. / The aim of current work is to optimize the serial-sectioning based tomography in a dual-beam focused ion beam (FIB) microscope, either by imaging in scanning electron microscopy (so-called FIB-SEM tomography), or by electron backscatter diffraction (so-called 3D-EBSD tomography). In both two cases, successive layers of studying object are eroded with the help of ion beam, and sequentially acquired SEM or EBSD images are utilized to reconstruct material volume. Because of different uncontrolled disruptions, drifts are generally presented during the acquisition of FIB-SEM tomography. We have developed thus a live drift correction procedure to keep automatically the region of interest (ROI) in the field of view. For the reconstruction of investigated volume, a highly precise post-mortem alignment is desired. Current methods using the cross-correlation, expected to be robust as this digital technique, show severe limitations as it is difficult, even impossible sometimes to trust an absolute reference. This has been demonstrated by specially-prepared experiments; we suggest therefore two alternative methods, which allow good-quality alignment and lie respectively on obtaining the surface topography by a stereoscopic approach, independent of the acquisition of FIB-SEM tomography, and realisation of a crossed ‘hole’ thanks to the ion beam. As for 3D-EBSD tomography, technical problems, linked to the driving the ion beam for accurate machining and correct geometrical repositioning of the sample between milling and EBSD position, lead to an important limitation of spatial resolution in commercial softwares (~ 50 nm)3. Moreover, 3D EBSD suffers from theoretical limits (large electron-solid interaction volume for EBSD and FIB milling effects), and seems so fastidious because of very long time to implement. A new approach, coupling SEM imaging of good resolution (a few nanometres for X and Y directions) at low SEM voltage and crystal orientation mapping with EBSD at high SEM voltage, is proposed. This method requested the development of computer scripts, which allow to drive the milling of FIB, the acquisition of SEM images and EBSD maps. The interest and feasibility of our approaches are demonstrated by a concrete case (nickel super-alloy). Finally, as regards crystal orientation mapping, an alternative way to EBSD has been tested; which works on the influence of channelling effects (ions or electrons) on the imaging contrast of secondary electrons. This new method correlates the simulations with the intensity variation of each grain within an experimental image series obtained by tilting and/or rotating the sample under the primary beam. This routine is applied again on a real case (polycrystal TiN), and shows a max misorientation of about 4° for Euler angles, compared to an EBSD map. The application perspectives of this approach, potentially faster than EBSD, are also evoked.

Page generated in 0.0579 seconds