• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • Tagged with
  • 24
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] AN APPROACH TO CONTROL OF NONLINEAR SYSTEMS THROUGH COPRIME FACTORIZATION / [pt] UM ENFOQUE SOBRE CONTROLE DE SISTEMAS NÃO LINEARES VIA FATORAÇÕES COPRIMAS

GUSTAVO AYRES DE CASTRO 18 December 2006 (has links)
[pt] O trabalho apresenta uma teoria de fatorações coprimas para sistemas não lineares e aplicações dessa teoria em problemas de controle. A parte inicial é exatamente a teoria de fatorações coprimas, que se assemelha à versão linear. O problema da estabilização de sistemas não lineares é resolvido através de realimentação aditiva, com pré e pós compensadores dinâmicos não lineares. A solução para esse problema é dada na forma da classe de compensadores que estabilizam o sistema. São também apresentadas condições para a estabilidade na presença de ruídos aditivos. Outro problema bastante relevante do ponto de vista de controles é o da especificação da dinâmica do sistema de malha fechada. O enfoque apresenta soluções de caráter local, o que permite que a dinâmica a ser especificada seja definida apenas sobre uma restrição do espeço de entrada. Dessa forma tornou-se factível a especificação de dinâmicas dentro de uma classe relativamente ampla. São discutidas possibilidades para o problema da regulação. Também utilizando condiçòes locais é apresentada uma teoria de estabilização robusta com relação a perturbações não estruturadas. Algumas soluções explícitas e relativamente estruturadas são apresentadas. / [en] The control of nonlinear systems via coprime factorization is the subject of this dissertation. Initially, a broad theory concerning nonlinear factorizations is presented. The class of stabilizing controllers for a given nonlinear plant is derived using that theory. Then, there are derived sufficient conditions for the closed loop system are also presented. One of the major departures from the original work on nonlinear factorizations is the fact that the solutions presented need only to be locally derived, which allows a wider class of dynamics to be assigned for the closed loop input- output transference relation. The robust control of nonlinear systems is achieved through the use of locally defined solutions, allowing to control systems subject to some relatively structured perturbations.
22

Resultantes, equações polinomiais e o teorema de Bezout

Tura, Fernando Colman January 2006 (has links)
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
23

Resultantes, equações polinomiais e o teorema de Bezout

Tura, Fernando Colman January 2006 (has links)
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
24

[en] SHOR S FACTORING ALGORITHM / [pt] O ALGORITMO DE FATORAÇÃO DE SHOR

ROBERTO CINTRA MARTINS 05 November 2018 (has links)
[pt] A dissertação apresenta detalhadamente o algoritmo de fatoração de Shor, tanto em termos de sua execução passo a passo como mediante sua representação em forma de circuito, abordando aspectos tanto de sua parte clássica como de sua parte quântica. Inicialmente são apresentados aspectos de teoria dos números indispensáveis para a compreensão do algoritmo e em seguida são desenvolvidos conceitos e propriedades de mecânica quântica e de informação quântica pertinentes. Em atenção ao caráter eminentemente estocástico do algoritmo realiza-se um estudo de sua fonte estocástica e demonstram-se os principais teoremas que embasam a avaliação de sua probabilidade de sucesso. Desenvolvem-se exemplos de simulação clássica do algoritmo. Finalmente, a eficiência do algoritmo de fatoração de Shor é comparada com a de algoritmos clássicos. / [en] The dissertation presents in detail Shor s factoring algorithm, including its execution step by step and its representation in the form of a circuit, addressing aspects of both its classical and its quantum parts. Aspects of number theory indispensable to understand the algorithm are presented, followed by a development of concepts and properties of quantum mechanics and quantum information. Considering the eminently stochastic character of the algorithm, a study of its stochastic source is carried out and the main theorems that support the evaluation of its probability of success are proved. Examples of classical simulation of the algorithm are developed. Finally, the efficiency of Shor s factoring algorithm is compared with that of classical algorithms.

Page generated in 0.0484 seconds