• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Παρασκευή και χαρακτηρισμός νέων άμορφων συμπαγών κραμάτων για εφαρμογές σε μηχανικές και σε ηλεκτρομαγνητικές διατάξεις

Πίσσας, Βασίλειος 06 September 2010 (has links)
Το θέμα αυτής της διπλωματικής είναι παρασκευή άμορφων μεταλλικών συμπαγών κραμάτων με τήξη σε βολταϊκό τόξο και ο χαρακτηρισμός της δομής τους και των μηχανικών ιδιοτήτων τους. Στο πρώτο κεφάλαιο γίνεται εισαγωγή στη δομή των υλικών και επεξηγούνται βασικές έννοιες των άμορφων υλικών και επίσης παρουσιάζονται οι κυριότερες εφαρμογές των άμορφων μεταλλικών συμπαγών κραμάτων. Στο δεύτερο κεφάλαιο περιγράφονται οι τεχνικές που χρησιμοποιούνται για την παρασκευή άμορφων συμπαγών μεταλλικών κραμάτων και στο τρίτο κεφάλαιο αναφέρονται οι κυριότερες φυσικές ιδιότητες των άμορφων μεταλλικών συμπαγών κραμάτων. Στο τέταρτο κεφάλαιο παρουσιάζεται η βαθμονόμηση της συσκευής περίθλασης ακτίνων Χ και της συσκευής παραγωγής και μέτρησης υπερήχων που χρησιμοποιήθηκαν για την μέτρηση των δειγμάτων που παρασκευάστηκαν στο εργαστήριο. Στο πέμπτο κεφάλαιο περιγράφεται ο τρόπος παρασκευής των άμορφων κραμάτων ζιρκονίου (Zr) και σιδήρου (Fe) και επίσης παρουσιάζονται και αναλύονται τα XRD διαγράμματα τους και τα μέτρα ελαστικότητας Young (E), διάτμησης (G) και όγκου (B). Τέλος στο έκτο κεφάλαιο αναφέρονται άλλες μετρήσεις που θα μπορούσαν να γίνουν για να χαρακτηριστούν τα παραπάνω δείγματα και περιγράφονται οι προοπτικές των άμορφων κραμάτων σιδήρου ως αντικείμενο έρευνας για το μέλλον. / The subject of this diploma thesis is the preparation of bulk amorphous metallic alloys with arc-melting technique and the characterization of their structure and their mechanical properties. The first chapter is an introduction to the structure of materials and it is explaine the basic concepts of amorphous materials. It is also present the main applications of bulk amorphous metallic alloys. The second chapter describes the techniques that used in the preparation of bulk amorphous metallic alloys and the third chapter refers the main physical properties of bulk amorphous metallic alloys. The fourth chapter describes the calibration of X-ray diffractοmeter and ultrasound measurement system that used for measuring the samples that have been prepared in the laboratory. In the fifth chapter is described the preparation of amorphous zirconium based (Zr) and iron based (Fe) alloys and also is presented and isanalyzed their XRD patterns and also their elastic moduli, like Young modulus(E), shear modulus (G) and bulk modulue (B). Finally the sixth chapter refers to other measurements that could be used to charactirize the samples that prepared and describes the prospects of amorphous iron based alloys as a research subject for the future.
12

Development of Fe-based Superalloys Strengthened by the γ'Phase / γ'相で強化したFe基超合金の開発

Ahmad, Afandi 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22777号 / 工博第4776号 / 新制||工||1747(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 乾 晴行, 教授 安田 秀幸, 教授 辻 伸泰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
13

Vapor-Reacted Diffusion Multiples for Efficient Study of Phase Equilibria and Interdiffusion

Eastman, Christopher Michael, Jr. 23 October 2019 (has links)
No description available.
14

Avaliação da magnetostricção em ligas Fe1-xMx (M = V, Sn) e caracterização de suas propriedades magnéticas e microestruturais / Evaluation of magnetostriction and microstructural characterization of Fe-Sn and Fe-V alloys

Claudio Teodoro dos Santos 25 January 2008 (has links)
Materiais magnetostrictivos exibem deformação elástica na presença de um campo magnético aplicado e por isso são de grande interesse para aplicação em sensores e atuadores. Trabalhos publicados no ano 2000 mostraram que a adição de Ga e Al ao Fe resulta em ligas com elevada magnetostricção em campos baixos. A partir daí os esforços foram direcionados para a descoberta de novas ligas magnetostrictivas à base de Fe com propriedades similares às encontradas nas ligas Fe-Ga e Fe-Al. No presente trabalho foram adicionados o Sn e o V ao Fe com o objetivo de avaliar a magnetostricção e a microestrutura das ligas formadas. Para isso, foram produzidas por fusão a arco as ligas Fe-9%at.Sn, Fe-20%at.Sn e as ligas Fex% at.V para x = 20, 25 e 30. As ligas Fe-Sn foram submetidas a tratamentos térmicos em 550 e 750°C por 24 h e em 880°C por 6 h e depois resfriadas rapidamente para a retenção das fases (Fe?,Sn), FeSn, Fe3Sn2 e Fe5Sn3. Já as ligas Fe-V foram tratadas em 1100°C por 6 h para homogeneização da fase única (Fe?,V). A caracterização microestrutural e análise quantitativa das fases foram feitas por microscopia óptica e eletrônica de varredura, microanálise por energia dispersiva (EDS) e difratometria de raios X. Também foi medida a microdureza Vickers das amostras. A magnetostricção foi medida por dilatometria de capacitância usando um dilatômetro de placa inclinada inserido no equipamento Maglab da Oxford Instruments, em campos na faixa de -1,5 a 1,5 T e temperaturas próximas de 203 K. A magnetização de saturação das amostras foi obtida em 77, 203 e 300 K utilizando o PPMS 6000 da Quantum Design. A magnetostricção de saturação (?S) das amostras da liga Fe-9Sn foi negativa e o comportamento das curvas similar ao do Fe puro. As amostras da liga Fe- 20Sn apresentaram ?S positiva devido à presença das fases ferromagnéticas Fe3Sn2 e Fe5Sn3. A ?S das ligas Fe-V foi positiva e maior em módulo do que a das ligas Fe-Sn. Concluiu-se que a substituição do Fe por Sn e V de modo geral melhorou a magnetostricção do Fe, porém a melhora não foi tão relevante quanto a observada pela substituição por Ga. / Magnetostrictive materials exhibit elastic strain in the presence of an applied magnetic field and therefore are of great interest for use in sensors and actuators. Works published in 2000 showed that the addition of Ga and Al in Fe results in alloys with high magnetostriction at low fields. Since then efforts have been directed to the discovery of new magnetostrictive Fe based alloys with similar properties to those found in Fe-Ga and Fe-Al alloys. In the present work Sn and V were added to Fe with the purpose of evaluating the magnetostriction and microstructure of these alloys. Therefore, Fe-9at.%Sn, Fe-20at.%Sn alloys and Fexat.% V alloys for x = 20, 25 and 30 were produced by arc melting. The Fe-Sn alloys were heat-treated at the temperatures of 550 and 750°C for 24 h and 880°C for 6 h and then rapidly cooled to the retention of the (?Fe,Sn), FeSn, Fe3Sn2 and Fe5Sn3 phases. Fe-V alloys were heat-treated at the temperature of 1100°C for 6 h to homogenize the (?Fe,Sn) single phase. Microstructural characterization and quantitative analysis of the phases were made by optical and scanning electron microscopy, microanalysis by energy dispersive spectroscopy (EDS) and X-ray powder diffraction. The Vickers microhardness of the samples was also measured. The magnetostriction was measured by capacitance dilatometry using a tilted plate dilatometer inserted into the Maglab platform by Oxford Instruments, using applied field in the range from -1.5 to 1.5 T and at temperatures close to 203 K. The samples saturation magnetization was obtained at 77, 203 and 300 K using the Quantum Design PPMS 6000. The saturation magnetostriction (?S) of the Fe-9Sn alloy samples was negative and the ?S vs. H curves behavior are similar to the pure Fe. Fe-20Sn alloy samples had positive ?S due to the presence of Fe3Sn2 and Fe5Sn3 ferromagnetic phases. The Fe-V alloys ?S was positive and larger in module than the Fe-Sn alloys ?S. We concluded that the substitution of Fe by Sn and V in a general way improved the magnetostriction of Fe, but the improvement was not as significant as observed with the substitution by Ga.
15

Avaliação da magnetostricção em ligas Fe1-xMx (M = V, Sn) e caracterização de suas propriedades magnéticas e microestruturais / Evaluation of magnetostriction and microstructural characterization of Fe-Sn and Fe-V alloys

Santos, Claudio Teodoro dos 25 January 2008 (has links)
Materiais magnetostrictivos exibem deformação elástica na presença de um campo magnético aplicado e por isso são de grande interesse para aplicação em sensores e atuadores. Trabalhos publicados no ano 2000 mostraram que a adição de Ga e Al ao Fe resulta em ligas com elevada magnetostricção em campos baixos. A partir daí os esforços foram direcionados para a descoberta de novas ligas magnetostrictivas à base de Fe com propriedades similares às encontradas nas ligas Fe-Ga e Fe-Al. No presente trabalho foram adicionados o Sn e o V ao Fe com o objetivo de avaliar a magnetostricção e a microestrutura das ligas formadas. Para isso, foram produzidas por fusão a arco as ligas Fe-9%at.Sn, Fe-20%at.Sn e as ligas Fex% at.V para x = 20, 25 e 30. As ligas Fe-Sn foram submetidas a tratamentos térmicos em 550 e 750°C por 24 h e em 880°C por 6 h e depois resfriadas rapidamente para a retenção das fases (Fe?,Sn), FeSn, Fe3Sn2 e Fe5Sn3. Já as ligas Fe-V foram tratadas em 1100°C por 6 h para homogeneização da fase única (Fe?,V). A caracterização microestrutural e análise quantitativa das fases foram feitas por microscopia óptica e eletrônica de varredura, microanálise por energia dispersiva (EDS) e difratometria de raios X. Também foi medida a microdureza Vickers das amostras. A magnetostricção foi medida por dilatometria de capacitância usando um dilatômetro de placa inclinada inserido no equipamento Maglab da Oxford Instruments, em campos na faixa de -1,5 a 1,5 T e temperaturas próximas de 203 K. A magnetização de saturação das amostras foi obtida em 77, 203 e 300 K utilizando o PPMS 6000 da Quantum Design. A magnetostricção de saturação (?S) das amostras da liga Fe-9Sn foi negativa e o comportamento das curvas similar ao do Fe puro. As amostras da liga Fe- 20Sn apresentaram ?S positiva devido à presença das fases ferromagnéticas Fe3Sn2 e Fe5Sn3. A ?S das ligas Fe-V foi positiva e maior em módulo do que a das ligas Fe-Sn. Concluiu-se que a substituição do Fe por Sn e V de modo geral melhorou a magnetostricção do Fe, porém a melhora não foi tão relevante quanto a observada pela substituição por Ga. / Magnetostrictive materials exhibit elastic strain in the presence of an applied magnetic field and therefore are of great interest for use in sensors and actuators. Works published in 2000 showed that the addition of Ga and Al in Fe results in alloys with high magnetostriction at low fields. Since then efforts have been directed to the discovery of new magnetostrictive Fe based alloys with similar properties to those found in Fe-Ga and Fe-Al alloys. In the present work Sn and V were added to Fe with the purpose of evaluating the magnetostriction and microstructure of these alloys. Therefore, Fe-9at.%Sn, Fe-20at.%Sn alloys and Fexat.% V alloys for x = 20, 25 and 30 were produced by arc melting. The Fe-Sn alloys were heat-treated at the temperatures of 550 and 750°C for 24 h and 880°C for 6 h and then rapidly cooled to the retention of the (?Fe,Sn), FeSn, Fe3Sn2 and Fe5Sn3 phases. Fe-V alloys were heat-treated at the temperature of 1100°C for 6 h to homogenize the (?Fe,Sn) single phase. Microstructural characterization and quantitative analysis of the phases were made by optical and scanning electron microscopy, microanalysis by energy dispersive spectroscopy (EDS) and X-ray powder diffraction. The Vickers microhardness of the samples was also measured. The magnetostriction was measured by capacitance dilatometry using a tilted plate dilatometer inserted into the Maglab platform by Oxford Instruments, using applied field in the range from -1.5 to 1.5 T and at temperatures close to 203 K. The samples saturation magnetization was obtained at 77, 203 and 300 K using the Quantum Design PPMS 6000. The saturation magnetostriction (?S) of the Fe-9Sn alloy samples was negative and the ?S vs. H curves behavior are similar to the pure Fe. Fe-20Sn alloy samples had positive ?S due to the presence of Fe3Sn2 and Fe5Sn3 ferromagnetic phases. The Fe-V alloys ?S was positive and larger in module than the Fe-Sn alloys ?S. We concluded that the substitution of Fe by Sn and V in a general way improved the magnetostriction of Fe, but the improvement was not as significant as observed with the substitution by Ga.
16

Synthesis And Characterization Of Bulk Glass-forming Iron-boron Based Alloy Systems

Gurbuz, Selen Nimet 01 June 2004 (has links) (PDF)
The aim of this study, which was carried out in two main parts, is to investigate the glass forming ability of Fe-based systems. The first part involves the theoretical modeling to cover the requirement of a predictive model to identify the Fe-based alloy families that have high glass forming ability in the frame of atomistic and thermodynamic approach. The second part involves the experimental investigations to prove the results of the conducted theoretical modeling studies. For this purpose, in the first part, theoretical investigations were performed to identify the third alloying elements that will lead to an increase in the glass forming ability on the base of electronic theory of alloys in pseudopotential approximation for selected Fe- based systems, Fe - (B, Zr, Nb, C, W). In the experimental part, in the frame of the theoretical investigation results, one of the theoretically modeled binary system, and the third alloying elements that were predicted to lead an increase in the glass forming ability of the selected binary system, were determined. As a first step, designated compositions were synthesized by using low grade conventional Fe-B alloy as a raw material by using centrifugal casting technique and copper mold casting method. To compare the results, same compositions were also cast from the high purity elements by using the same technique and method. For the characterization of these cast specimens, DSC, XRD, SEM, EDS and metallographic examination techniques were used. Amorphous structure was successfully obtained in the thin sections of the wedge-cast samples for Fe-B-Nb and Fe-B-W ternary systems.
17

Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy and spectroscopy

Nag, Pranab Kumar 11 December 2017 (has links) (PDF)
In this thesis, the electronic properties in superconducting LiFeAs single crystal are investigated using low temperature scanning tunneling microscopy and spectroscopy (STM/S) at various temperatures. For this purpose, the differential conductance (dI/dV) measured by STS which is directly proportional to the local density of states (LDOS) of the sample to the sub-atomic precision, is used together with the topography information. The dI/dV spectra within the ±1 V energy range reveal a characteristic feature at around -350 mV to -400 mV in stoichiometric LiFeAs. This feature seems to be a universal property among all the Fe-based high temperature superconductors, because it is also found in Fe0.965Se1.035 and NaFe0.975Co0.025As single crystals at the energy of -210 mV and -200 mV, respectively. The temperature dependent spectroscopy data averaged over a spatially fixed clean area of 2 nm × 2 nm are successfully executed between 5 K and 20 K. The two distinct superconducting phases with critical temperatures Tc = 16 K and 18 K are observed. In addition, the distance between the dip position outside the superconducting gap and the superconducting coherence peak in the spectra remains temperature independent which confirms that it is not connected to an antiferromagnetic (AFM) spin resonance. The temperature dependent spectra have been measured between 5 K and 61 K within the energy range of ±100 mV as well. The hump structure at 42 mV tends to disappear around 60 K from unknown origin. The temperature dependent quasiparticle interference (QPI) has been studied within the temperature range between 6.7 K and 25 K and analyzed by the Fourier transformation of the measured spectroscopic maps. The dispersion plots in momentum space as a function of temperature show an enhancement of QPI intensity (±5.5 mV) within the superconducting gap at the Fermi level at 6.7 K near q ~ 0. This is interpreted on the basis of Andreev bound state. In both polarities outside of this, a depletion of QPI intensity is noticed between 5.5 mV and around 9 mV. At positive energies, the QPI intensity becomes very rich above 9 mV. The size of the enhanced QPI intensity near the Fermi level, and the edge of the rich QPI intensity beyond 9 mV are found to behave like superconducting order parameter with rising of temperature. Furthermore, an energy mode peaked at around 14 mV appears in the integrated QPI intensity below superconducting Tc (6.7 K). This is consistent with the observed peak at 1st derivative of the dI/dV spectra. In both of these cases, such 14 mV peak is suppressed at normal state (25 K). This mode is therefore directly related to superconductivity in LiFeAs. The off-stoichiometric LiFeAs single crystal with superconducting Tc of 6.5 K has a 10 mV rigid band shift of the Fermi level towards electron doping. The absence of the rich QPI intensity between 9 mV and 17 mV is found compared to the stoichiometric LiFeAs, and hence the 14 mV mode is absent here. This brings us to conclude once more time that such 14 mV energy mode is relevant for superconductivity in LiFeAs.
18

Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy and spectroscopy

Nag, Pranab Kumar 11 October 2017 (has links)
In this thesis, the electronic properties in superconducting LiFeAs single crystal are investigated using low temperature scanning tunneling microscopy and spectroscopy (STM/S) at various temperatures. For this purpose, the differential conductance (dI/dV) measured by STS which is directly proportional to the local density of states (LDOS) of the sample to the sub-atomic precision, is used together with the topography information. The dI/dV spectra within the ±1 V energy range reveal a characteristic feature at around -350 mV to -400 mV in stoichiometric LiFeAs. This feature seems to be a universal property among all the Fe-based high temperature superconductors, because it is also found in Fe0.965Se1.035 and NaFe0.975Co0.025As single crystals at the energy of -210 mV and -200 mV, respectively. The temperature dependent spectroscopy data averaged over a spatially fixed clean area of 2 nm × 2 nm are successfully executed between 5 K and 20 K. The two distinct superconducting phases with critical temperatures Tc = 16 K and 18 K are observed. In addition, the distance between the dip position outside the superconducting gap and the superconducting coherence peak in the spectra remains temperature independent which confirms that it is not connected to an antiferromagnetic (AFM) spin resonance. The temperature dependent spectra have been measured between 5 K and 61 K within the energy range of ±100 mV as well. The hump structure at 42 mV tends to disappear around 60 K from unknown origin. The temperature dependent quasiparticle interference (QPI) has been studied within the temperature range between 6.7 K and 25 K and analyzed by the Fourier transformation of the measured spectroscopic maps. The dispersion plots in momentum space as a function of temperature show an enhancement of QPI intensity (±5.5 mV) within the superconducting gap at the Fermi level at 6.7 K near q ~ 0. This is interpreted on the basis of Andreev bound state. In both polarities outside of this, a depletion of QPI intensity is noticed between 5.5 mV and around 9 mV. At positive energies, the QPI intensity becomes very rich above 9 mV. The size of the enhanced QPI intensity near the Fermi level, and the edge of the rich QPI intensity beyond 9 mV are found to behave like superconducting order parameter with rising of temperature. Furthermore, an energy mode peaked at around 14 mV appears in the integrated QPI intensity below superconducting Tc (6.7 K). This is consistent with the observed peak at 1st derivative of the dI/dV spectra. In both of these cases, such 14 mV peak is suppressed at normal state (25 K). This mode is therefore directly related to superconductivity in LiFeAs. The off-stoichiometric LiFeAs single crystal with superconducting Tc of 6.5 K has a 10 mV rigid band shift of the Fermi level towards electron doping. The absence of the rich QPI intensity between 9 mV and 17 mV is found compared to the stoichiometric LiFeAs, and hence the 14 mV mode is absent here. This brings us to conclude once more time that such 14 mV energy mode is relevant for superconductivity in LiFeAs.
19

Fe-based composite materials with advanced mechanical properties

Werniewicz, Katarzyna 07 May 2010 (has links)
In this study a series of novel Fe-based materials derived from a bulk metallic glass-forming composition was investigated to improve the ductility of this high-strength glassy alloy. The interplay between the factors chemistry, structure and resulting mechanical properties was analyzed in detail. It has been recognized that subtle modifications of the chemical composition (carbon addition) lead to appreciable changes in the phase formation, which occurs upon solidification (from a single-phase structure to composite materials). As a consequence, significant differences in the mechanical response of the particular samples have been observed. The materials developed here were fabricated by centrifugal casting. To explore the structure features of the as-cast cylinders, manifold experimental techniques (X-ray diffraction, optical, as well as electron microscopy) were employed. The occurrence of the numerous reflections on the X-ray diffraction patterns has confirmed the crystalline nature of the studied Fe-based alloy systems. The subsequent extensive research on their deformation behavior (Vickers hardness and room temperature compression tests) has revealed that, although the glass-forming ability of the investigated compositions is not high enough to obtain a glassy phase as a product of casting, excellent mechanical characteristics (high strength - comparable to that of the reference bulk metallic glass (BMG) - associated with good ductility) were achieved for the “composite-like” alloys. In contrast, the single phase cylinders, subjected to compressive loading, manifested an amazing capacity for plastic deformation – no failure occurred. The fracture motives developed during deformation of the “composite-structured” samples were studied by scanning electron microscopy. The main emphasis has been put on understanding the mechanisms of crack propagation. Owing to the structural complexity of the deformed samples, it was crucial to elucidate the properties of the individual compounds. Based on the obtained results it was concluded that the coexistence of a soft f.c.c. γ-Fe phase in combination with a hard complex matrix is responsible for the outstanding mechanical response of the tested composites. While the soft particles of an austenite contribute to the ductility (they hinder the crack propagation and hence, cause unequivocal strain-hardening), the hard constituents of the matrix phase yield the strength.
20

Corrosion Behaviour of Advanced Fe-Based Bulk Metallic Glasses

Gostin, Petre Flaviu 11 May 2011 (has links) (PDF)
Early developed non-bulk Fe-based glasses, e.g. Fe-Cr(-Mo)-metalloid(s), exhibit extraordinary corrosion resistance, but low glass formation ability (GFA). Newly developed bulk glass-forming Fe-based alloys have on the contrary high GFA, but also very different compositions and therefore their corrosion behaviour is expectedly not similar. Fundamental investigations regarding corrosion behaviour were performed for one of the most prominent bulk glassy alloy, namely (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5. Particularly, the free corrosion and the anodic polarization behaviour, the passivation ability and the pitting susceptibility have been assessed in electrolytes with varying pH values and anion species concentrations. Due to its monolithic single phase microstructure this alloy has a much lower corrosion rate in acids than a two-phase conventional steel (DIN X210Cr12) with much higher content of passivating Cr, i.e. 11.4 at. %. However, the high concentration of electrochemically active Mn and B as well as the unfavourably high Mo to Cr concentration ratio determine a higher corrosion rate of this bulk glassy alloy in strong alkalis and also a very poor passivation ability in acids. On the contrary, the high content of Mo has a positive influence on the pitting resistance by inhibiting very effectively the propagation of pits occurring at Y2O3 inclusions. Detailed microscopic analysis investigations by HRSEM and in-situ AFM revealed the formation of characteristic morphological features at the micro- and nanometre scale on the surface of samples exposed to acidic solutions. These were explained by selective dissolution of active elements, e.g. Mn, B. This study demonstrated the necessity to investigate the corrosion properties of newly developed bulk glass-forming Fe-based alloys – they are not per-se highly corrosion resistant, but their corrosion behaviour depends on their particular chemical composition. / Früh entwickelte, nicht-massive amorphe Eisenbasislegierungen, z.B. Fe-Cr(-Mo)-Metalloid(e), zeigen bemerkenswerte Korrosionsbeständigkeit, aber niedrige Glasbildungsfähigkeit (englisch: glass-forming ability, GFA). Neu entwickelte massiv-glasbildende Eisenbasislegierungen haben im Gegenteil eine höhere GFA, aber auch sehr unterschiedliche Zusammensetzungen und deshalb ist ihr Korrosionverhalten ist wie zu erwarten nicht änlich. Grundlegende Untersuchungen des Korrosionsverhaltens einer der bekanntesten massiven amophen Legierung, nämlich (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5, wurden vorgenommen. Insbesondere wurde das Augenmerk auf das freie Korrosions- und das anodische Polarisationsverhalten, die Passivierungseigenschaften und die Anfälligkeit gegenüber Lochfraß in Elektrolyten mit verschiedenen pH-Werten und Anionenkonzentrationen gerichtet. Aufgrund ihres einphasig monolitischen Gefüges zeigt diese Legierung in Säuren eine viel niedrigere Korrosionsgeschwindigkeit als die eines zweiphasigen herkömmlichen Stahls (DIN X210Cr12) mit viel höherem Gehalt an passivierendem Cr, d.h. 11.4 at.%. Der höhere Gehalt an electrochemisch aktivem Mn und B sowie das nachteilige Verhältnis von Mo zu Cr Konzentration sind für eine höhere Korrosionsgeschwindigkeit dieser massiven amorphen Legierung in konzentrierten Alkalien sowie eine geringere Passivierungsfähigkeit in Säuren verantwortlich. Der hohe Gehalt an Mo hat jedoch einen positiven Einfluss auf die Lochfraßbeständigkeit – er hindert sehr wirksam das Wachstum der an Y2O3-Einschlüssen gebildeten Löcher. Detaillierte mikroskopische Untersuchungen durch HRSEM und in-situ AFM zeigten die Bildung charakteristischer Morphologien im Mikrometer- und Nanometerbereich auf der Oberfläche von Proben, die starken Säure ausgesetzt waren. Dieses wurde durch selektive Auflösung aktiver Elemente, z.B. Mn, B, erklärt. Diese Arbeit unterstreicht die Notwendigkeit, die Korrosionseigenschaften der neu entwickelten, massivglasbildenden Eisenbasislegierungen zu untersuchen – diese sind nicht per-se „hochkorrosionsbeständig“, stattdessen hängt ihr Korrosionsverhalten vielmehr von ihrer besonderen chemischen Zusammensetzung ab.

Page generated in 0.0234 seconds