• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 36
  • 14
  • 1
  • Tagged with
  • 90
  • 58
  • 39
  • 39
  • 34
  • 34
  • 34
  • 34
  • 29
  • 26
  • 22
  • 13
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Amorphes Zinkoxinitrid: Untesuchung einer vielversprechenden Alternative zu amorphen Oxidhalbleitern

Reinhardt, Anna 19 March 2018 (has links)
Die vorliegende Dissertation befasst sich mit der Herstellung und Charakterisierung von amorphen Zinkoxinitrid (a-ZnON)-Dünnschichten und darauf basierten aktiven Bauelementen. Im ersten Ergebnisteil wird der Einfluss ausgewählter Prozesspa- rameter der verwendeten Magnetron-Sputteranlage im Hinblick auf die chemische Zusammensetzung und den daraus resultierenden strukturellen, optischen und elektrischen Eigenschaften der hergestellten Dünnschichten untersucht. Für die Analyse des elektronischen Transportmechanismus in a-ZnON-Dünnschichten werden zudem temperaturabhängige Hall-Effekt-Messungen ausgewertet. Außerdem werden Ausheiz- und Alterungseffekte sowie die Langzeitstabilität und Reproduzierbarkeit der elektrischen Eigenschaften von bei Raumtemperatur abgeschiedenen a-ZnON-Dünnschichten betrachtet. Der zweite Ergebnisteil befasst sich mit der Realisierung von Feldeffekttransistoren (FETs) mit a-ZnON als Kanalmaterial. Dazu erfolgt zunächst die elektrische Charakterisierung von gleichrichtenden Schottky- und pn-Kontakten auf a-ZnON mittels (temperaturabhängigen) Strom-Spannungs-Messungen sowie Kapazitäts-Spannungs-Messungen. Zum Schluss wird die Machbarkeit von Metall-Halbleiter-FETs sowie Sperrschicht-FETs basierend auf optimiertem a-ZnON demonstriert.
42

Sortierung von Kohlenstoffnanoröhren und deren Anwendung als aktive Elemente in Feldeffekttransistoren

Posseckardt, Juliane 30 March 2012 (has links)
1998 publizierten die Arbeitsgruppen von S. J. Tans und R. Martel die Herstellung des Prototypen eines Kohlenstoffnanoröhren Feldeffekttransistors. Dabei bilden halbleitende Kohlenstoffnanoröhren den aktiven, feldgesteuerten Bereich des Transistors. Aufgrund der herausragenden Eigenschaften der Kohlenstoffnanoröhren wurde den Bauelementen ein großes Anwendungspotential in Halbleiterindustrie und Sensorik vorhergesagt. Dass die Verwendung von Kohlenstoffnanoröhren in der Industrie heute hinter den Erwartungen zurückbleibt, liegt vor allem an den Problemen bei der Sortierung und Integration der Kohlenstoffnanoröhren: Trotz intensiver Bemühungen entsteht bei der Synthese eine Mischung aus halbleitenden und metallischen Kohlenstoffnanoröhren. Eine postsynthetische Separation der Spezies ist daher notwendig. In dieser Arbeit wurden verschiedene Wege zur Separation der Kohlenstoffnanoröhren in eine halbleitende und metallische Fraktion verfolgt: (i) Die Dichtegradientenzentrifugation differenziert zwischen unterschiedlichen Schwimmdichten der Kohlenstoffnanoröhren in einer Lösung mit einem Dichtegradienten. Durch die selektive Assemblierung unterschiedlich polarisierbarer Tenside werden Dichteunterschiede zwischen den halbleitenden und metallischen Röhren hergestellt. In einem Zwei-Schritt-Verfahren konnte so eine hohe Reinheit an halbleitenden Kohlenstoffnanoröhren erzielt werden. (ii) Die dielektrophoretische Auftrennung der Kohlenstoffnanoröhren erfolgt aufgrund von Unterschieden in der Polarität und der Leitfähigkeit der metallischen und halbleitenden Spezies. Durch die Wahl des Tensidsystems können dabei die Unterschiede zwischen den beiden Spezies verstärkt und somit die Sortierung effizienter gestaltet werden. Die Erfahrungen mit statischen Dielektrophorese-Experimenten wurden in ein kontinuierliches mikrofluidisches System übertragen. Damit eröffnet sich die Möglichkeit der Separation der Kohlenstoffnanoröhren im größeren Maßstab. Im Anschluss an die Sortierung ist ein Prozess notwendig, der die parallele Integration vieler Kohlenstoffnanoröhren in mikroelektronische Strukturen auf einem Wafer ermöglicht. Die Dielektrophorese erlaubt die ortsspezische parallele Assemblierung der Kohlenstoffnanoröhren in vorgefertigte Strukturen. Damit können auf Waferebene Kohlenstoffnanoröhren-Feldeffekttransistoren aufgebaut werden. In dieser Arbeit kann gezeigt werden, dass mit der Integration sortierter halbleitender Röhren die übliche selektive Zerstörung metallischer Strompfade überflüssig ist. Im letzten Teil dieser Arbeit soll der aufgebaute Kohlenstoffnanoröhren-Feldeffekttransistor für einen zukünftigen Einsatz als membranbasierter Biosensor modifiziert werden. Dafür wird eine Doppellipidschicht über den Kohlenstoffnanoröhren assembliert werden, welche als Modell für eine Biomembran dient. Es werden erste Messungen in Flüssigkeit gezeigt und die Interaktion der Lipidmoleküle mit den dispergierten Kohlenstoffnanoröhren charakterisiert.
43

Fabrication and Optical and Electronic Characterization of Conjugated Polymer-Stabilized Semiconducting Single-Wall Carbon Nanotubes in Dispersions and Thin Films / Herstellung und Optische- und Elektronische- Charakterisierung von konjugierten Polymer-stabilisierten halbleitenden Kohlenstoffnanoröhren in Dispersionen und dünnen Filmen

Namal, Imge January 2018 (has links) (PDF)
In order to shrink the size of semiconductor devices and improve their efficiency at the same time, silicon-based semiconductor devices have been engineered, until the material almost reaches its performance limits. As the candidate to be used next in semiconducting devices, single-wall carbon nanotubes show a great potential due to their promise of increased device efficiency and their high charge carrier mobilities in the nanometer size active areas. However, there are material based problems to overcome in order to imply SWNTs in the semiconductor devices. SWNTs tend to aggregate in bundles and it is not trivial to obtain an electronically or chirally homogeneous SWNT dispersion and when it is done, a homogeneous thin film needs to be produced with a technique that is practical, easy and scalable. This work was aimed to solve both of these problems. In the first part of this study, six different polymers, containing fluorene or carbazole as the rigid part and bipyridine, bithiophene or biphenyl as the accompanying copolymer unit, were used to selectively disperse semiconducting SWNTs. With the data obtained from absorption and photoluminescence spectroscopy of the corresponding dispersions, it was found out that the rigid part of the copolymer plays a primary role in determining its dispersion efficiency and electronic sorting ability. Within the two tested units, carbazole has a higher π electron density. Due to increased π−π interactions, carbazole containing copolymers have higher dispersion efficiency. However, the electronic sorting ability of fluorene containing polymers is superior. Chiral selection of the polymers in the dispersion is not directly foreseeable from the selection of backbone units. At the end, obtaining a monochiral dispersion is found to be highly dependent on the used raw material in combination to the preferred polymer. Next, one of the best performing polymers due to high chirality enrichment and electronic sorting ability was chosen in order to disperse SWNTs. Thin films of varying thickness between 18 ± 5 to 755o±o5 nm were prepared using vacuum filtration wet transfer method in order to analyze them optically and electronically. The scalability and efficiency of the integrated thin film production method were shown using optical, topographical and electronic measurements. The relative photoluminescence quantum yield of the radiative decay from the SWNT thin films was found to be constant for the thickness scale. Constant roughness on the film surface and linearly increasing concentration of SWNTs were also supporting the scalability of this thin film production method. Electronic measurements on bottom gate top contact transistors have shown an increasing charge carrier mobility for linear and saturation regimes. This was caused by the missing normalization of the mobility for the thickness of the active layer. This emphasizes the importance of considering this dimension for comparison of different field effect transistor mobilities. / Um die Verkleinerung in Halbleiterbauelementen zu erreichen und gleichzeitig ihre Effizienz zu verbessern, wurden Halbleiterbauelemente auf Siliziumbasis entwickelt, bis das Material seine Leistungsgrenzen nahezu erreicht hat. Als zukünftiger Kandidat, der in halbleitenden Geräten Verwendung finden wird, zeigen einwandige Kohlenstoff−Nanoröhren ein großes Potenzial für eine erhöhte Geräteeffizienz. Grund dafür sind ihre hohen Ladungsträger−Mobilitäten in den ein paar Nanometergroßen aktiven Flächen. Allerdings gibt es materialbasierte Probleme zu überwinden um SWNTs in den Halbleiterbauelementen zu implizieren. SWNTs neigen dazu in Bündeln zu aggregieren. Eine Herausforderung ist zudem eine elektronische oder chiral homogene Kohlenstoffnanorohr−Dispersion zu erhalten. Ein weiteres Problem ist, aus diesen Kohlenstoffnanorohr−Dispersion einen homogenen Dünn−Film mit einer Technik herzustellen die praktisch, einfach und skalierbar ist. Diese Arbeit zielte darauf ab, diese beiden Probleme zu lösen. Im ersten Teil dieser Arbeit wurden sechs verschiedene Polymere, die Fluoren oder Carbazol als starren Teil und Bipyridin, Bithiophen oder Biphenyl als begleitende Copolymereinheit enthielten, verwendet um selektiv halbleitende SWNTs zu dispergieren. Mit den aus der Absorptions− und Photolumineszenzspektroskopie erhaltenen Daten der entsprechenden Dispersionen wurde herausgefunden, dass der starre Teil des Copolymers eine primäre Rolle bei der Bestimmung seiner Dispersionseffizienz und der elektronischen Sortierfähigkeit spielt. Innerhalb der beiden getesteten Einheiten hat Carbazol eine höhere π−Elektronendichte. Aufgrund erhöhter π−π Wechselwirkungen haben Carbazol−haltige Copolymere eine höhere Dispersionseffizienz. Die elektronische Selektivität von fluorenhaltigen Polymeren ist gegenüber Carbazol enthaltenden Polymeren höher. Die chirale Selektivität der Polymere in der Dispersion ist nicht direkt vor der Auswahl der Grundgerüsteinheiten vorhersehbar. Am Ende wird das Erhalten einer monochiralen Dispersion im hohen Maße von den verwendeten Rohmaterialien in Kombination mit dem bevorzugten Polymer abhängig gemacht. Im nächsten Schritt wurde ein Polymer ausgewählt der durch eine hohe Chiralitätanreicherung besticht und zudem eine gute elektronische Sortierfähigkeit besitzt, um SWNTs zu dispergieren. Dünnfilme unterschiedlicher Dicke, zwischen 18 ± 5 bis 755 ± 5 nm, wurden unter der Verwendung eines Vakuumfiltrations−Nassübertragungsverfahrens hergestellt um sie daraufhin optisch und elektronisch zu analysieren. Die Skalierbarkeit und Effizienz des integrierten Dünnschichtherstellungsverfahrens wurde anhand optischer, topographischer und elektronischer Messungen gezeigt. Die relative Photolumineszenzquantenausbeute des Strahlungsabfalls aus den SWNT−Dünnfilmen wurde für den Dickenmaßstab konstant gehalten. Eine konstante Rauigkeit auf der Filmoberfläche und eine linear zunehmende Konzentration von SWNTs unterstützten auch die Skalierbarkeit dieses Dünnfilmherstellungsverfahrens. Elektronische Messungen am „bottom gate – top contact Transistoren“ zeigten eine zunehmende Ladungsträgermobilität für Linear− und Sättigungsregionen. Dies wurde durch die fehlende Normalisierung der Ladungsträgermobilität für die Dicke der aktiven Schicht verursacht. Betrachtet man die Wichtigkeit, diese Dimension für den Vergleich verschiedener Feldeffekttransistor− Mobilitäten zu betrachten, so deutet diese Feststellung auch darauf hin, dass es eine Skalierung in der Dicke in Bezug auf die berechneten Mobilitäten für die Feldeffekttransistoren gibt.
44

Multiskalensimulation des Ladungstransports in Silizium-Nanodraht-Transistoren / Multiscale simulations of charge transport in silicon nanowire-based transistors

Eckert, Hagen 13 November 2012 (has links) (PDF)
Durch Multiskalensimulationen wird der Ladungstransport in nanodrahtbasierten Schottky-Barrieren-Feldeffekt-Transistoren im Materialsystem Ni2Si/Si untersucht. Die Bedingungen an die Genauigkeit der verwendeten Eingangsparameter werden bestimmt und Vorhersagen über optimale Material- und Geräteparameter werden getroffen. Es wird die Frage beantwortet, ob die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinie möglich ist. Der Feldeffekt wird durch Berechnungen auf Basis der Finiten-Elemente-Methode und die resultierenden Stromflüsse durch ein quantenmechanisches Transportmodell ermittelt. In der Untersuchung der geometrischen Eingangsparameter wird gezeigt, dass bis auf den Radius des Nanodrahtes die in einem Experiment zu erwartenden Messfehler keinen drastischen Einfluss auf die Strom-Spannungs-Kennlinie haben. Signifikant ist hingegen der Einfluss der Temperatur, der effektiven Ladungsträgermassen und der Höhe der Schottky-Barriere. Da diese drei Eingangsparameter des betrachteten Systems mit relativ großen Ungenauigkeiten behaftet sind, ist die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinien auf die erhoffte Weise nicht möglich. Die Arbeit zeigt auch, dass bereits moderate Veränderungen der Arbeitstemperatur einen bedeutenden Einfluss auf die Strom-Spannungs-Kennlinie haben. Für die Konstruktion von Transistoren mit hoher Stromdichte kann anhand der ermittelten Daten die Verkleinerung der aktiven Region durch Oxidation vorgeschlagen werden. / Charge transport in nanowire-based Schottky-barrier field-effect transistors in the material system Ni2Si/Si is examined by multi-scale simulations. The requirements for the accuracy of the input parameters are determined and predictions about optimum material and device parameters are made. The question is answered, whether the determination of physical parameters from individual measured current-voltage curves is possible? The field effect is described by calculations based on the finite element method and the resulting currents are calculated with a quantum mechanical transport model. In the study of the geometric input parameters it is shown that experimental uncertainties do not drastically affect the current-voltage characteristic, except from the nanowire radius. However, significant is the influence of the temperature, the effective charge carrier mass and the height of the Schottky-barrier. Since these three input parameters are known only with low experimental accuracy for the considered system, the determination of physical parameters from individual measured current-voltage curves is not possible in the expected way. The results also show that moderate changes of the working temperature have a significant influence on the current-voltage characteristic. For the construction of transistors with high current density the reduction of the active region by oxidation is proposed.
45

Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport / Electric and magnetic switching in nonlinear mesoscopic transport

Hartmann, David January 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. / This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport.
46

Injektion, Transport und Elektrolumineszenz in organischen Halbleiterbauelementen

Heil, Holger. Unknown Date (has links)
Techn. Universiẗat, Diss., 2004--Darmstadt.
47

Selbstorganisation von Kohlenstoffnanoröhren zu Feldeffekttransistoren

Taeger, Sebastian 19 April 2008 (has links) (PDF)
Kohlenstoffnanoröhren (engl. carbon nanotubes, CNT) verfügen über eine Vielzahl von herausragenden und möglicherweise nutzbringenden Eigenschaften. Die kontrollierte Integration von CNT in technische Systeme stellt noch immer eine große Herausforderung dar. Im Rahmen der vorliegenden Arbeit wurden neue Methoden für den Aufbau von Strukturen und Bauelementen aus CNT entwickelt, die auf Selbstorganisation bzw. bottom-up assembly basieren. Dabei kamen sowohl biochemische als auch physikalische Verfahren zum Einsatz. Einzelsträngige DNA wurde verwendet um CNT in wässrigen Medien zu suspendieren und zu vereinzeln. Beides sind wichtige Voraussetzungen, um die günstigen elektronischen Eigenschaften der CNT zugänglich zu machen. DNA-CNT-Suspensionen wurden sowohl spektroskopisch in ihrer Gesamtheit als auch kraftmikroskopisch auf molekularer Ebene untersucht. So konnten wesentliche Parameter des Herstellungsprozesses optimiert werden, um Suspensionen mit einem hohen Gehalt an langen, sauberen, vereinzelten CNT zu erhalten. Durch die Verwendung von funktionalisierten DNA-Molekülen ist es gelungen, Halbleiterquantenpunkte und Goldkolloide an CNT anzubinden. Im Fall der Quantenpunkte gelang dies mit Hilfe der Biotin-Streptavidin Bindung unter Anwendung des Prinzips der molekularen Erkennung. Die Anbindung dieser Nanopartikel kann als Prototyp für den DNA-vermittelten Strukturaufbau aus CNT angesehen werden. Zur Deposition von CNT in Elektrodenstrukturen wurde ein auf Dielektrophorese beruhendes Verfahren eingesetzt. Dabei ist es gelungen, die wesentlichen Parameter zu identifizieren, die für die Morphologie der abgeschiedenen CNT entscheidend sind. So konnte die Dichte der CNT-Verbindungen zwischen Elektroden von einzelnen Verbindungen über wenige bis hin zu sehr vielen parallel assemblierten CNT eingestellt werden. Durch ein sich selbst steuerndes Hintereinanderlagern von CNT war es möglich auch Elektroden zu verbinden, deren Abstand größer war als die Länge der verwendeten CNT. Durch gezieltes Eliminieren metallischer CNT-Strompfade nach der Deposition ist es gelungen, CNT-Feldeffekttransistoren (CNT-FETs) mit Schaltverhältnissen von bis zu sieben Dekaden herzustellen. Auch dieses Verfahren ist skalierbar und unkompliziert, da es sich selbst steuert. Es ist skalierbar und deshalb auch für technische Anwendungen geeignet. An Hand des Beispiels der Detektion von Ethanoldampf konnte gezeigt werden, dass die über Dielektrophorese aufgebauten CNT-FETs auch als Sensoren eingesetzt werden können. Durch eine Kombination der dielektrophoretischen Deposition von CNT und dem dielektrophoretisch gesteuerten Wachstum metallischer Nanodrähte konnte eine neuartige Hybridstruktur aus CNT und Palladium-Nanodrähten erzeugt werden. Ein solches Verfahren ist eine Voraussetzung für den Aufbau integrierter nanoskaliger Schaltkreise. Die vorliegenden Ergebnisse zeigen zahlreiche Möglichkeiten auf, verschiedenartige nanoskopische Objekte miteinander integrieren, um neue Anwendungen zu ermöglichen.
48

Enhancement of n-channel Organic Field-Effect Transistor Performance through Surface Doping and Modification of the Gate Oxide by Aminosilanes

Shin, Nara 22 August 2019 (has links)
In this these, in order to enhance the n-channel organic field-effect transistor (OFET) performance, amino functionalized self-assembled monolayers (A-SAMs) which consist of amino groups, a well-known n-type dopant candidate, were introduced from the top of OFET surfaces and on the gate oxide surfaces. To obtain better understanding for optimization of OFET performances we attempted to elucidate the mechanism of surface doping and surface modification by A-SAMs. Both the surface doping and surface modification of the gate oxide approaches have individual pros and cons. One needs to take into account the surface energy properties of SAMs and the resulting OSC film structure and pick the most suitable method to introduce the SAM material to the OFET (either doping or oxide modification) in order to obtain optimized device performances. Our study strongly suggests that both surface doping and surface modification of the gate oxide with A-SAMs could enhance other semiconductor-based electronic device performances.:Abstract v Chapter 1. Introduction 1 Chapter 2. Theoretical Background 7 2.1. Organic Semiconductors (OSCs) 8 2.1.1. Semiconducting properties of organic molecules 8 2.1.2. Charge Transport Mechanism in OSCs 10 2.2. Organic Field-Effect Transistors (OFETs) 18 2.2.1. Operation Principle 18 2.2.2. Device Geometry of OFETs 20 2.2.3. Contacts (metal/semiconductor junction) in OFETs 21 2.2.4. Dielectric material for OFETs 23 2.2.5. Current-Voltage Characteristics of OFETs 25 2.3. Dominant contributors to OFET Performance 32 2.3.1. Molecular structure and Orientation of OSCs 32 2.3.2. Dielectric/OSC Interface 33 2.3.3. OSC/Contact Interface (Contact resistance) 35 2.3.4. Shallow and deep traps 36 2.4. Strategies to improve OFET performance 37 2.4.1. Introducing dopants to OFETs 37 2.4.2. Modification of Gate Oxide Layer with SAMs 44 Chapter 3. Experimental 51 3.1. Device Fabrication 52 3.1.1. Device type I - Substrate/ODTMS/PTCDI-C8/Au 53 3.1.2. Device type II - Substrate/ODTCS/N2200 (PNDI2OD-2T)/Au 53 3.1.3. Device type III - Substrate/SAMs/PTCDI-C8/Au 54 3.2. Surface doping process 56 3.2.1. Surface dopant – Aminosilanes (A-SAMs) 56 3.2.2. Surface doping method 56 3.3. Characterization 59 3.3.1. Material characterization 59 3.3.2. Surface-wetting characterization - Contact angle measurement 61 3.3.3. Micro-structure characterization - Atomic Force Microscopy (AFM) 62 3.3.4. Surface potential characterization – Kelvin Probe Force Microscopy (KPFM) 63 3.3.5. Molecular Structure Characterization - Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) 64 3.3.6. Electrical Characterization - Current-voltage (I-V) measurement 66 Chapter 4. Result and Discussion 69 4.1. Optimization of OFETs based on PTCDI-C8 and N2200 70 4.1.1. PTCDI-C8 OFETs 70 4.1.2. N2200 OFETs 72 4.1.3. Device measurement condition 75 4.2. Investigation of Surface doping mechanism of Aminosilanes 77 4.2.1. Surface doping effect depending on the dopant processing method 77 4.2.2. Surface doping effect for different types of organic semiconductors 80 4.2.3. Surface doping effect for different types of surface dopants 89 4.2.4. Surface doping effect for different OSC grain sizes 92 4.2.5. Surface doping effect for different OSC film thicknesses 103 4.2.6. Molecular structure of the doped films identified by GIWAXS 106 4.2.7. Stability of the surface doped OFETs 107 4.2.8. Summary 111 4.3. Modification of the gate oxide with various self-assembled monolayers 112 4.3.1. The surface property of SAM-treated substrates 112 4.3.2. The relation between the OSC morphology and the field-effect mobility 115 4.3.3. The origin of the threshold voltage shift 126 4.3.4. Memristive effects in PTCDI-C8 devices on ODTMS 133 4.3.5. Summary 137 4.4. Comparison of the surface doping and the modification of the gate dielectric 138 4.4.1. The reliability factor of OFETs 138 4.4.2. The threshold voltages and field-effect mobility of OFETs 141 4.4.3. Density of Interfacial trap sites and SAM induced mobile carriers 143 4.4.4. Summary 144 Chapter 5. Conclusion 145 Bibliography 148 List of Figures 158 List of Tables 166 List of Equations 167 Acknowledgment 168 Erklärung zur Eröffnung des Promotionsverfahrens 169
49

Micro- and tip-enhanced Raman spectroscopy of single-wall carbon nanotubes: from material studies to device applications

Kalbacova, Jana 21 December 2018 (has links)
Einwandige Kohlenstoffnanoröhrchen wurden aufgrund ihrer einzigartigen elektrischen, mechanischen und thermischen Eigenschaften 1991 in den Fokus der Forschung gerückt. In dieser Dissertation wird gezeigt, dass Ramanspektroskopie eine der besten Methoden ist, um die unterschiedlichen Eigenschaften der Nanoröhrchen wie ihren elektrischen Charakter (halbleitend oder metallisch), ihren Durchmesser, die Chiralität, Defekte oder auch Dotierung zu untersuchen. Die Charakterisierung dieser Eigenschaften wird sowohl für das reine Material als auch im elektrischen Bauteil, in diesem Fall einem Feldeffekttransistor, durchgeführt. Der erste Teil der Arbeit vermittelt einen Überblick und gibt eine Einführung in Ramanspektroskopie und in die Struktur von Kohlenstoffnanoröhrchen. Es wird erklärt, welche Eigenschaften speziell mit Hilfe von Position und Intensität der Raman-Modi untersucht werden können und welche Aussagen über die Eigenschaften getroffen werden können. Im experimentellen Teil der Arbeit wurde eine Methode entwickelt, die eine rückstandslose Abscheidung von Dünnschichten aus Kohlenstoffnanoröhrchen ermöglicht. Die Quantifizierung von Defekten wurde durch die in den untersuchten Proben vorhandenen metallischen und halbleitenden Kohlenstoff-Nanoröhrchen ermöglicht. Mittels spitzenverstärkter Ramanspektroskopie wurden außerdem Defekte mit hoher Ortsauflösung (unterhalb von 10 nm) an einzelnen Nanoröhrchen charakterisiert. Der letzte Teil widmet sich den Eigenschaften in elektrische Bauteile, speziell Feldeffekttransistoren, die integrierten Kohlenstoffnanoröhrchen.:Bibliographische Beschreibung 3 Table of Contents 5 1 Introduction 7 2 Background 9 2.1 Structure of carbon nanotubes 9 2.2 Raman spectroscopy basics 10 2.3 Raman spectroscopy on graphene 14 2.4 Raman spectroscopy on carbon nanotubes 16 2.4.1 First-order Raman bands 18 2.4.2 Second-order Raman bands 20 2.5 How to analyze Raman spectra of single-wall carbon nanotubes 21 2.5.1 Diameter and chirality identification 22 2.5.2 Defect characterization 23 2.5.3 Doping and its connection to defects 25 2.5.4 Other effects that can cause frequency shifts 27 2.6 Tip-enhanced Raman spectroscopy 27 2.6.1 TERS experimental requirements 30 2.6.2 Tip and the signal enhancement 30 2.6.3 Brief summary of TERS on single-wall carbon nanotubes 31 3 Materials and Methods 33 3.1 Raman spectroscopy 33 3.2 Ion beam irradiation 34 3.3 SWCNT samples 35 3.4 SWCNT thin film preparation by vacuum filtration 36 3.5 Field effect transistor fabrication and electrical characterization 37 3.6 Tip-enhanced Raman spectroscopy 39 3.6.1 Preparation of the TERS tips 39 3.6.2 Instrumentation 39 3.6.3 SWCNT sample preparation 40 4 Preparation of carbon nanotube thin films 41 4.1 Removal of SDS 42 4.2 Removal of the density gradient medium 43 4.3 Summary 44 5 Quantifying defects in single-wall carbon nanotubes 45 5.1 Parameters of the defect creation 46 5.2 Reference measurement on ion irradiated graphite 47 5.3 Qualitative description of SWCNT defect development 48 5.3.1 Quantitative analysis of the SWCNT defects 57 5.3.2 Summary 59 6 Raman spectroscopy applied to investigate carbon nanotube transistors 61 6.1 Effect of chemical and thermal cleaning of SWCNTs 61 6.2 Effect of temperature and doping on SWCNTs in a Field-effect transistor 65 6.2.1 Investigation of temperature effect 66 6.2.2 In operando CNT-FET Raman spectroscopy measurement 67 6.3 Summary 71 7 TERS on SWCNTs 73 7.1 Preparation of TERS tips 73 7.1.1 Corrosion protection for silver TERS probes 73 7.2 Spatial resolution 76 7.3 Raman spectra of an individual nanotube at the nanoscale 77 7.4 Summary 81 8 Conclusions 83 References 85 Acknowledgement 97 Selbstständigkeitserklärung 99 Lebenslauf 101 Publication list 103
50

Exploring the Use of Solution-Shearing for the Fabrication of High-Performance Organic Transistors

Haase, Katherina 26 April 2021 (has links)
Organic field-effect transistors (OFETs) are essential devices for the realization of novel electronic applications based on organic materials. Recent years have brought tremendous improvements regarding the organic semiconductor (OSC) with charge carrier mobilities around 10 cm²/Vs. Yet, several challenges are needed to be addressed in order to enable technologies of the future that are based on high-performance organic transistors. In this work, C8-BTBT, a high-mobility material that has gained increasing interest in the last few years, is used to prepare films with state-of-the art charge-carrier mobility and above. For this purpose, the solution-shearing method—a meniscus-guided technique that is capable to produce highly aligned, crystalline films—is applied. Based on these charge-transport layers with an estimated intrinsic mobility of up to 12 cm²/Vs, several strategies towards their exploitation for high-performance organic transistors are investigated. Among the relevant parameter, channel length, contact resistance and gate dielectric capacitance are the three aspects that are addressed. The solution-shearing method is further applied to the realization of solution-deposited polymer dielectrics. High-capacitance films with maximum values of about 280 nF/cm² are fabricated and used to produce low-voltage OFETs that can operate at -1V. In order to increase the devices’ transconductance, a novel patterning methodology to achieve sub-micrometre channel lengths is investigated. Using this technique, working devices with a channel length of 500 nm are shown. The compatibility of this process with the solution-shearing method for the fabrication of high-performance semiconducting and gate dielectric films is one of its major advantages. One of the limiting device parameters is the contact resistance as is clearly observable by the restricted current scaling that is observed for lower channel length. Hence, the interface of OSC and source/drain contacts is investigated. Even though an ultimate solution for very low contact resistance remains to be developed, important aspects for its further enhancement are deduced in this work. As an important first experimental result, this thesis describes a short-channel device architecture that is compatible with solution-shearing of high-performance films with its full potential yet to be explored in future work. / Organische Feld-Effekt Transistoren (OFETs) sind grundlegende Bestandteile für die Entwicklung neuerartiger Technologien auf der Basis von organischen Halbleitermaterialien. Insbesondere während der letzten Jahre haben diese Materialien einschlägige Verbesserungen erfahren und erreichen heute Ladungsträgermobilitäten um die 10 cm²/Vs. Um dies für die Umsetzung neuartiger Technologien zu nutzen, müssen jedoch noch einige Herausforderungen überwunden werden. Diese Arbeit leistet einen Beitrag in diese Richtung. Unter Anwendung eines der wohl populärsten Halbleitermaterialien der letzen Jahre mit der chemischen Bezeichnung C8-BTBT, wird die Herstellung von hochqualitativen Halbleiterfilmen mittels Flüssigprozessierung gezeigt. Mit der sogenannten „Solution-Shearing“ Methode – eine Abscheidetechnik, die über die Kontrolle eines trocknenden Meniskus hochkristalline und ausgerichtete Schichten erzeugen kann – ist es möglich Dünnschichtbauelemente mit abgeschätzten, intrinsischen Ladungsträgermobilitäten von bis zu 12 cm²/Vs zu erzeugen. Um diese hoch-qualitativen Filme für die Herstellung von leistungsfähigen Transistoren zu nutzen, werden mehrere relevante Parameter betrachtet, darunter die Kanallänge, der Kontaktwiderstand und das Gate-Dielektrikum. Im Speziellen wird die Abscheidung des Dielektrikums mittels der „Solution-Shearing“ Methode untersucht. Es kann gezeigt werden, dass dies für die Herstellung von qualitativ hochwertigen Filmen mit Kapazitäten bis zu 280 nF/cm² genutzt werden kann. Angewendet in OFETs erlauben diese Schichten den Betrieb bei sehr geringen Spannungen von -1V. Um die Transkonduktanz der Transistoren zu erhöhen wird zudem eine mit der „Solution-Shearing“ Methode kompatible Source/Drain-Strukturierungsmethode untersucht. Diese ermöglicht Kanallängen unter einem Mikrometer und konnte hier für die Herstellung von funktionierenden Transistoren mit einer Kanallänge bis zu nur 500 nm angewendet werden. Eine der limitierenden Transistorkenngrößen ist der Kontaktwiderstand, wie durch die abweichende Skalierung des Stromes mit verringerter Kanallänge deutlich wird. Aus diesem Grund wurde auch die Grenzfläche zwischen Halbleiter und Source/Drain-Kontakten näher untersucht. Allerdings verbleibt die Entwicklung einer effektiven Methode zur Reduzierung des Kontaktwiderstandes ein Projekt für zukünftige Untersuchungen, auch wenn die vorliegende Arbeit einige wichtige Anhaltpunkte für mögliche Strategien liefert. Als wichtiges erstes Resultat liefert die vorliegende Arbeit eine Beschreibung zur Herstellung funktionsfähiger Kurzkanal-OFETs mittels „Solution-Shearing“, deren volles Potential aber in der Zukunft weiter untersucht werden muss.

Page generated in 0.0556 seconds