• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 36
  • 14
  • 1
  • Tagged with
  • 90
  • 58
  • 39
  • 39
  • 34
  • 34
  • 34
  • 34
  • 29
  • 26
  • 22
  • 13
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Recovery of Cycling Endurance Failure in Ferroelectric FETs by Self-Heating

Mulaosmanovic, Halid, Breyer, Evelyn T., Mikolajick, Thomas, Slesazeck, Stefan 26 November 2021 (has links)
This letter investigates the impact of self-heating on the post-cycling functionality of a scaled hafnium oxide-based ferroelectric field-effect transistor (FeFET). The full recovery of FeFET switching properties and data retention after the cycling endurance failure is reported. This is achieved by damage annealing through localized heating, which is intentionally induced by a large current flow through the drain (source)-body p-n junctions. The results highlight that the local thermal treatments could be exploited to extend the cycling endurance of FeFETs.
52

In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen Feldeffekttransistor

Ludemann, Michael 06 July 2016 (has links) (PDF)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.
53

Designing Efficient Circuits Based on Runtime-Reconfigurable Field-Effect Transistors

Rai, Shubham, Trommer, Jens, Raitza, Michael, Mikolajick, Thomas, Weber, Walter M., Kumar, Akash 26 November 2021 (has links)
An early evaluation in terms of circuit design is essential in order to assess the feasibility and practicability aspects for emerging nanotechnologies. Reconfigurable nanotechnologies, such as silicon or germanium nanowire-based reconfigurable field-effect transistors, hold great promise as suitable primitives for enabling multiple functionalities per computational unit. However, contemporary CMOS circuit designs when applied directly with this emerging nanotechnology often result in suboptimal designs. For example, 31% and 71% larger area was obtained for our two exemplary designs. Hence, new approaches delivering tailored circuit designs are needed to truly tap the exciting feature set of these reconfigurable nanotechnologies. To this effect, we propose six functionally enhanced logic gates based on a reconfigurable nanowire technology and employ these logic gates in efficient circuit designs. We carry out a detailed comparative study for a reconfigurable multifunctional circuit, which shows better normalized circuit delay (20.14%), area (32.40%), and activity as the power metric (40%) while exhibiting similar functionality as compared with the CMOS reference design. We further propose a novel design for a 1-bit arithmetic logic unit-based on silicon nanowire reconfigurable FETs with the area, normalized circuit delay, and activity gains of 30%, 34%, and 36%, respectively, as compared with the contemporary CMOS version.
54

Multiskalensimulation des Ladungstransports in Silizium-Nanodraht-Transistoren: Evaluation der Grenzen des Simulationsmodells: Ist die Bestimmung von physikalischen Parameten aus gemessenem Strom-Spannungs-Kennlinien möglich?

Eckert, Hagen 05 November 2012 (has links)
Durch Multiskalensimulationen wird der Ladungstransport in nanodrahtbasierten Schottky-Barrieren-Feldeffekt-Transistoren im Materialsystem Ni2Si/Si untersucht. Die Bedingungen an die Genauigkeit der verwendeten Eingangsparameter werden bestimmt und Vorhersagen über optimale Material- und Geräteparameter werden getroffen. Es wird die Frage beantwortet, ob die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinie möglich ist. Der Feldeffekt wird durch Berechnungen auf Basis der Finiten-Elemente-Methode und die resultierenden Stromflüsse durch ein quantenmechanisches Transportmodell ermittelt. In der Untersuchung der geometrischen Eingangsparameter wird gezeigt, dass bis auf den Radius des Nanodrahtes die in einem Experiment zu erwartenden Messfehler keinen drastischen Einfluss auf die Strom-Spannungs-Kennlinie haben. Signifikant ist hingegen der Einfluss der Temperatur, der effektiven Ladungsträgermassen und der Höhe der Schottky-Barriere. Da diese drei Eingangsparameter des betrachteten Systems mit relativ großen Ungenauigkeiten behaftet sind, ist die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinien auf die erhoffte Weise nicht möglich. Die Arbeit zeigt auch, dass bereits moderate Veränderungen der Arbeitstemperatur einen bedeutenden Einfluss auf die Strom-Spannungs-Kennlinie haben. Für die Konstruktion von Transistoren mit hoher Stromdichte kann anhand der ermittelten Daten die Verkleinerung der aktiven Region durch Oxidation vorgeschlagen werden.:Kurzfassung/Abstract I Verwendete Symbole IV Verwendete Parameter VI Verwendete Abkürzungen VII 1 Motivation 8 2 Grundlagen 9 2.1 Modellbildung und Simulation 9 2.2 Schottky-Diode 10 2.3 Feldeffekt-Transistor 12 2.4 Feldeffekt-Transistor auf der Basis von Silizium-Nanodrähten 13 3 Methoden 17 3.1 Simulationsmodell 17 3.2 Finite-Elemente-Methode 20 3.3 Landauer-Büttiker-Formalismus 21 3.4 Hamiltonoperator 22 3.5 Transmissionsfunktion 23 3.6 Büttiker Sonde 24 4 Ergebnisse und Diskussion 26 4.1 Implementierung des Simulationsprogrammes 26 4.2 Berechnung der Basis-Strom-Spannungs-Kennlinie 31 4.3 Wahl der Simulationsparameter 35 4.4 Abhängigkeit von geometrischen Parametern 41 4.5 Abhängigkeit von physikalischen Parametern 49 5 Zusammenfassung, Schlussfolgerungen und Ausblick 55 Abbildungsverzeichnis 59 Literatur 62 / Charge transport in nanowire-based Schottky-barrier field-effect transistors in the material system Ni2Si/Si is examined by multi-scale simulations. The requirements for the accuracy of the input parameters are determined and predictions about optimum material and device parameters are made. The question is answered, whether the determination of physical parameters from individual measured current-voltage curves is possible? The field effect is described by calculations based on the finite element method and the resulting currents are calculated with a quantum mechanical transport model. In the study of the geometric input parameters it is shown that experimental uncertainties do not drastically affect the current-voltage characteristic, except from the nanowire radius. However, significant is the influence of the temperature, the effective charge carrier mass and the height of the Schottky-barrier. Since these three input parameters are known only with low experimental accuracy for the considered system, the determination of physical parameters from individual measured current-voltage curves is not possible in the expected way. The results also show that moderate changes of the working temperature have a significant influence on the current-voltage characteristic. For the construction of transistors with high current density the reduction of the active region by oxidation is proposed.:Kurzfassung/Abstract I Verwendete Symbole IV Verwendete Parameter VI Verwendete Abkürzungen VII 1 Motivation 8 2 Grundlagen 9 2.1 Modellbildung und Simulation 9 2.2 Schottky-Diode 10 2.3 Feldeffekt-Transistor 12 2.4 Feldeffekt-Transistor auf der Basis von Silizium-Nanodrähten 13 3 Methoden 17 3.1 Simulationsmodell 17 3.2 Finite-Elemente-Methode 20 3.3 Landauer-Büttiker-Formalismus 21 3.4 Hamiltonoperator 22 3.5 Transmissionsfunktion 23 3.6 Büttiker Sonde 24 4 Ergebnisse und Diskussion 26 4.1 Implementierung des Simulationsprogrammes 26 4.2 Berechnung der Basis-Strom-Spannungs-Kennlinie 31 4.3 Wahl der Simulationsparameter 35 4.4 Abhängigkeit von geometrischen Parametern 41 4.5 Abhängigkeit von physikalischen Parametern 49 5 Zusammenfassung, Schlussfolgerungen und Ausblick 55 Abbildungsverzeichnis 59 Literatur 62
55

In situ Raman-Spektroskopie an Metallphthalocyaninen: Von ultradünnen Schichten zum organischen Feldeffekttransistor

Ludemann, Michael 01 July 2016 (has links)
Im ersten Teil der Arbeit werden Signalverstärkungsmechanismen für Raman-Spektroskopie erschlossen und evaluiert. Die als geeignet bewerteten Methoden finden im zweiten Teil ihre Anwendung zur Untersuchung der vibronischen Eigenschaften von dünnen Manganphthalocyaninschichten, die anschließend mit Kalium interkaliert werden. Hierbei sind verschiedene Phasen identifizierbar, die ein ganzzahliges Verhältnis von Kaliumatomen zu Manganphthalocyaninmolekülen besitzen. Im dritten Teil werden die elektrischen Eigenschaften durch die Verwendung dieses Materialsystems als aktives Medium eines Feldeffekttransistors untersucht.:1. Einleitung 2. Theoretische Grundlagen der angewendeten Effekte 3. Experimentelle Details 4. Herstellung, Charakterisierung und Optimierung von Substraten für Raman-Oberflächenverstärkungseffekte 5. Untersuchung zu Verstärkungsmechanismen des Raman-Effekts an dünnen organischen Schichten 6. Interkalation mit Kalium in dünne Schichten aus Manganphthalocyanin 7. MnPc unter Spannungs- und Stromeinfluss - Der Feldeffekttransistor 8. Zusammenfassung Anhang Literatur Abbildungsverzeichnis Eidesstattliche Versicherung Lebenslauf Liste wissenschaftlicher Leistungen Danksagung
56

Integrated Circuits Based on Individual Single-Walled Carbon Nanotube Field-Effect Transistors

Ryu, Hyeyeon 05 November 2012 (has links) (PDF)
This thesis investigates the fabrication and integration of nanoscale field-effect transistors based on individual semiconducting carbon nanotubes. Such devices hold great potential for integrated circuits with large integration densities that can be manufactured on glass or flexible plastic substrates. A process to fabricate arrays of individually addressable carbon-nanotube transistors has been developed, and the electrical characteristics of a large number of transistors has been measured and analyzed. A low-temperature-processed gate dielectric with a thickness of about 6 nm has been developed that allows the transistors and circuits to operate with voltages of about 1.5 V. The transistors show excellent electrical properties, including a large transconductance (up to 10 µS), a large On/Off ratio (>10^4), a steep subthreshold swing (65 mV/decade), and negligible leakage currents (~10^-13 A). For the realization of unipolar logic circuits, monolithically integrated load resistors based on high-resistance metallic carbon nanotubes or vacuum-evaporated carbon films have been developed and analyzed by four-probe and transmission line measurements. A variety of combinational logic circuits, such as inverters, NAND gates and NOR gates, as well as a sequential logic circuit based on carbon-nanotube transistors and monolithically integrated resistors have been fabricated on glass substrates and their static and dynamic characteristics have been measured. Optimized inverters operate with frequencies as high as 2 MHz and switching delay time constants as short as 12 ns. / Thema dieser Arbeit ist die Herstellung und Integration von Feldeffekt-Transistoren auf der Grundlage einzelner halbleitender Kohlenstoffnanoröhren. Solche Bauelemente sind zum Beispiel für die Realisierung integrierter Schaltungen mit hoher Integrationsdichte auf Glassubstraten oder auf flexiblen Kunststofffolien von Interesse. Zunächst wurde ein Herstellungsverfahren für die Anfertigung einer großen Anzahl solcher Transistoren auf Glas- oder Kunststoffsubstraten entwickelt, und deren elektrische Eigenschaften wurden gemessen und ausgewertet. Das Gate-Dielektrikum dieser Transistoren hat eine Schichtdicke von etwa 6 nm, so das die Versorgungsspannungen bei etwa 1.5 V liegen. Die Transistoren haben sehr gute elektrische Parameter, z.B. einen großen Durchgangsleitwert (bis zu 10 µS), ein großes Modulationsverhältnis (>10^4), einen steilen Unterschwellanstieg (65 mV/Dekade) und vernachlässigbar kleine Leckströme (~10^-13 A). Für die Realisierung unipolarer Logikschaltungen wurden monolithisch integrierte Lastwiderstände auf der Grundlage metallischer Kohlenstoffnanoröhren mit großem Widerstand oder mittels Vakuumabscheidung erzeugter Kohlenstoffschichten entwickelt und u. a. mittels Vierpunkt- und Transferlängen-Messungen analysiert. Eine Reihe kombinatorischer Schaltungen, z.B. Inverter, NAND-Gatter und NOR-Gatter, sowie eine sequentielle Logikschaltung wurden auf Glassubstraten hergestellt, und deren statische und dynamische Parameter wurden gemessen. Optimierte Inverter arbeiten bei Frequenzen von bis zu 2 MHz und haben Signalverzögerungen von lediglich 12 ns.
57

Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-Systemen

Truman Sutanto, Pagra 09 January 2008 (has links) (PDF)
In dieser Arbeit wird eine neue Methode und ein neuartiges FET -Sensorelement zum Nachweis von Flüssigkeitsbewegungen vorgestellt, das zudem bei Bedarf auch als Chemo- oder Biosensor fungieren kann. Das Einsatzspektrum von FET-basierten Sensoren in Lab on a Chip-Systemen wird dadurch entscheidend erweitert. Bei dem entwickelten FET-Sensor Bauelement handelt es sich um einen normally-on n-leitenden Dünnschichtfeldeffekttransistor mit Ti-Au-Kontakten, basierend auf Silicon-on-Insulator- Substraten, wobei das natürliche Oxid des Siliziumfilms als Schnittstelle zum Elektrolyten bzw. zur Flüssigkeit verwendet wird. Der mit 10exp16 Bor Atomen pro cm³ p-dotierte Siliziumdünnfilm hat eine Dicke von nur 55 nm und ist durch eine 95 nm dicke Siliziumdioxidschicht vom darunterliegenden Siliziumsubstrat von 600 µm Dicke elektrisch isoliert. Aufgrund der geringen Schichtdicke durchdringt die feldempfindliche Raumladungs- bzw. Verarmungszone die gesamte Dünnschicht, so dass durch Anlegen einer Backgatespannung am Substrat der spezifische Widerstand und die Empfindlichkeit des Bauelements eingestellt werden können. Grundlegende ISFET-Funktionalitäten wie die Empfindlichkeit auf Änderungen der Ionenstärke und des pH-Wertes werden nachgewiesen und ein ENFET-Glukosesensor realisiert. Zudem wird im Hinblick auf die Separation von Emulsionen der Nachweis erbracht, dass die Benetzung mit Hexan und Toluol eine Änderung der spezifischen Leitfähigkeit bewirkt, und die Empfindlichkeit des Bauelements nach Beschichtung mit einem hydrophoben Methacrylatcopolymerfilm erhalten bleibt. Hinsichtlich der Verwendung des FET-Sensor Bauelements zum Nachweis von Flüssigkeitsbewegungen wird zunächst ein theoretisches Modell entwickelt, dessen Kernaussage ist, dass sich in einem rechteckigen Kanal der relative Bedeckungsgrad mit Flüssigkeit direkt proportional zum Drainstrom des FET-Sensors verhält. Basierend auf diesem theoretischen Modell, welches experimentell belegt wird, können mittels eines einzelnen FET-Sensors Füllstand und Füllgeschwindigkeit bzw. bei bekannter Füllgeschwindigkeit Kapillarvolumen und Kapillargeometrie bestimmt werden. Abweichungen von der direkten Proportionalität erlauben zudem, Rückschlüsse auf die Benetzungseigenschaften der Kapillaren und die Dynamik an der Halbleitergrenzfläche zu ziehen. Ist ein Sensorelement vollständig mit Flüssigkeit bedeckt, wird mittels Lösungsmitteltropfen als Markerobjekten die Strömungsgeschwindigkeit bestimmt. Ändert sich die Ionenkonzentration im Elektrolyten als Funktion der Strömungsgeschwindigkeit, so kann die Strömungsgeschwindigkeit durch Messung der Ionenkonzentration mittels FET-Sensor ebenfalls ermittelt werden. Als wichtigster Demonstrator für die Verwendung des FET-Sensors wird ein komplexes Lab on a Chip-System zur Separation von Emulsionen auf chemisch strukturierten Oberflächen entwickelt, bei dem der Separationsvorgang mittels FET-Sensorarray verfolgt werden kann. Zur einfachen Herstellung chemisch modifizierter Oberflächen für die Separationsexperimente werden die Abscheidung von nanoskaligen hydrophoben Methacrylatcopolymerfilmen und die selektive Fluorsilanisierung von Oberflächen sowie deren Lösungsmittelbeständigkeit in Wasser, Toluol und Aceton untersucht. Dabei zeigt sich, dass die Hydrophobie nach Lösungsmittelbehandlung weitestgehend erhalten bleibt, Wasserrückstände im Methacrylatfilm aber zu einer reversiblen Schichtdegradation führen können. Als Modellsystem werden Hexan-Wasser- bzw. Toluol-Wasser-Emulsionen verwendet, die auf Oberflächen getrennt werden, deren eine Seite hydrophil, und deren andere Seite hydrophob ist (Stufengradient). Der Separationsprozess beruht auf der großen Affinität des Wassers hin zu polaren Oberflächen, wobei das wenig selektive Lösungsmittel zur unpolaren Seite gedrängt wird. Zur Erlangung eines tieferen Verständnisses des Prozesses werden die Tropfenkoaleszenz und der Einfluss geometrischer Beschränkungen untersucht. Die Versuche werden sowohl auf offenen Oberflächen als auch im Spalt, unter Verwendung von hydrophilen und hydrophoben Oberflächen, durchgeführt. Es zeigt sich, dass sich die Dynamik der Tropfenkoaleszenz im Spalt umgekehrt zur Dynamik auf offenen Oberflächen verhält. Dies wird mittels eines hierzu entwickelten theoretischen Modells erklärt, welches die Minimierung der Oberflächenenergie und Hystereseeffekte einbezieht. Das Lab on a Chip-System schließlich besteht aus einem mit Siliziumnitrid beschichteten FET-Sensorchip, auf den eine Separationszelle aufgeklebt ist. Neben dem Einlass für die Emulsion ist ein weiterer Einlass vorhanden, durch den Salzsäure für eine pH-Reaktion zugegeben werden kann. Der gesamte Separationsprozess sowie die anschließende pH-Reaktion, lassen sich bequem am PC anhand der Änderung der Stromstärke der einzelnen Sensoren verfolgen und analysieren. Wichtige Ergebnisse hier sind: 1) Mittels eines quasi 1-dimensionalen Sensorarrays kann der Verlauf einer Flüssigkeitsfront in einem 2-dimensionalen Areal überwacht bzw. dargestellt werden. 2) Anhand der Signatur des Signalverlaufs bei pH-Änderung und Flüssigkeitsbewegung, können beide Prozesse unterschieden werden. Der Sensor kann also zum Nachweis von Flüssigkeitsbewegungen und zugleich als Chemosensor eingesetzt werden. Es wurde also nicht nur ein neuartiges, äußerst robustes, chemikalienbeständiges und biokompatibles Multifunktionssensorelement mit Abmessungen im Mikrometer- bis Millimeterbereich entwickelt, sondern auch eine neue Methode entwickelt, mit der es möglich ist, sowohl (bio-)chemische Reaktionen als auch die Bewegung von Flüssigkeiten in Lab on a Chip-Systemen nachzuweisen.
58

Elektrische und spektroskopische Charakterisierung von organischen Feldeffekttransistor-Strukturen

Lehmann, Daniel 03 April 2009 (has links) (PDF)
In dieser Arbeit werden die Resultate aus den elektrischen Untersuchungen an organischen Feldeffekttransistoren (OFETs) auf der Basis von Pentacen und von verschiedenen Perylentetracarbonsäurediimid-Derivaten (PTCDI) vorgestellt und diskutiert. Die PTCDI-Derivate wurden zudem mit der spektroskopischen Ellipsometrie hinsichtlich ihrer Morphologie und ihrer optischen Eigenschaften untersucht. Im Rahmen dieser Arbeit wurde ein System zur Herstellung und zur elektrischen Charakterisierung von OFET-Strukturen entwickelt. Dieses erlaubt die Herstellung von Strukturen bzw. Schichtsystemen unter gekühlten oder erhitzten Bedingungen im Hochvakuum. Die elektrische Vermessung kann danach direkt im Vakuum erfolgen, ohne das erzeugte Bauteil den Gasen der Umgebungsluft oder Licht auszusetzen, wodurch die Ergebnisse von den Einflüssen beider Faktoren unabhängig sind. Außerhalb des Vakuums fanden weitere Messmethoden Verwendung, um die Grenzflächeneinflüsse und das organische Schichtwachstum detailliert zu untersuchen und mit den Ergebnissen der elektrischen Messungen korrelieren zu können. Das in der Literatur bereits vielfach besprochene p-leitende Pentacen wurde einerseits als Referenzmaterial bei der Entwicklung der Herstellungsprozedur für die hier erzeugten OFETs eingesetzt, andererseits auch zum Vergleich zwischen sowohl mit hydrophobisierendem Octadecyltrichlorosilan (OTS) oberflächenbehandelten und -unbehandelten OFETs. Zudem wurde es auch zum Vergleich zwischen dem hier verwendeten Top-Kontakt-Aufbau und dem in der Literatur diskutierten Bottom-Kontakt-Aufbau verwendet. Die elektrischen Messungen offenbarten einerseits eine um den Faktor 2 höhere Lochmobilität und andererseits auch eine erhöhte Stabilität unter Spannungsbelastung der OTS-behandelten Probe gegenüber der Nichtbehandlung. Die Schwellspannung blieb unbeeinflusst. Unter Verwendung der Potentiometrie konnten ortsaufgelöste Spannungsverläufe in Abhängigkeit von der Position im Kanal aufgenommen werden. Dabei zeigte sich für die hier verwendeten Top-Kontakt-OFETs kein signifikanter Kontaktwiderstand zwischen Gold und Pentacen an der Grenzfläche der Source- und Drain-Elektroden, wie es in der Literatur für Bottom-Kontakt-OFETs berichtet wurde. Das extrahierte ortsaufgelöste elektrische Feld im Kanal erschien für die OTS-behandelte Probe symmetrisch, während die unbehandelte Probe einen asymmetrischen Verlauf aufwies. Mit Hilfe der spektroskopischen Ellipsometrie konnten Aussagen über die Morphologie der n-leitenden PTCDI-Derivate DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI und PDI-8CN2 getroffen werden. Die dabei im selben Prozess ermittelten dielektrischen Funktionen können für die Verwendung der untersuchten organischen Halbleiter in optoelektronischen Bauelementen von großer Bedeutung sein. Zur korrekten Beschreibung der unter DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auftretenden großen Oberflächenrauigkeiten wurde ein neues Ellipsometrie-Modell entwickelt, womit auch für diese Derivate die dielektrische Funktion bestimmt werden konnte. Ausgehend von den aus Rasterkraftmikroskopiebildern ermittelten tiefenabhängigen Materialdichteverteilungen wurde dabei ein angepasster Verlauf für die Materialdichte innerhalb der Rauigkeitsschicht entwickelt, welcher das traditionelle Modell vollständig ersetzen kann. Die elektrischen Messungen ergaben für die PTCDI-Derivate erheblich unterschiedliche Kenngrößen. Die verschiedenen Seitenketten führten dabei zu Unterschieden in der Elektronenmobilität von bis zu vier Größenordnungen. Ebenso wiesen die Schwellspannungen Differenzen bis 20 V auf. Des Weiteren zeigten sich unter elektrischer Belastung und nach einer thermischen Behandlung deutlich unterschiedliche und teilweise konträre Effekte hinsichtlich der Entwicklung der Elektronenmobilität und der Schwellspannung. Da alle untersuchten PTCDI-Derivate optisch isotrop aufwuchsen, konnte über der Molekülorientierung kein Bezug zur Ladungsträgermobilität gefunden werden. Jedoch konnten die sehr geringen Mobilitäten von DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auf deren Inselwachstum zurückgeführt werden, welches die nötige Pfadlänge für die Ladungsträger zwischen den Elektroden erhöhte. An Umgebungsluft stellten alle PTCDI-Derivate bis auf PDI-8CN2 ihre Funktionalität ein. Abgesehen von letzterem war DiMe-PTCDI nach erneutem Einbringen ins Vakuum und einer Erholungszeit von mehreren zehn Minuten wieder funktionstüchtig. Eine OTS-Behandlung wurde für PDI-8CN2 durchgeführt, um zu einem Vergleich mit den Ergebnissen von Pentacen zu gelangen. Es zeigte sich aber, dass nahezu alle elektrischen Eigenschaften von PDI-8CN2 durch diese Behandlung negativ beeinflusst wurden. / In this work the results of the electrical characterization of organic field-effect transistors (OFETs) based on pentacene and various derivatives of perylene tetracarboxylic diimide (PTCDI) are presented and discussed. The PTCDI derivatives were also characterized regarding their morphology and their optical properties using spectroscopic ellipsometry. A system for the preparation and electrical characterization of OFET structures was developed, which allows the preparation of thin film devices under cooled and annealed conditions, respectively, in high vacuum. The electrical measurements can be performed directly in vacuum without exposing the prepared device to the environmental gases or light making the results independent of these factors. Under ambient atmosphere further techniques have been used to study the growth of the organic layers in detail to correlate these results with the results of the electrical characterization. Pentacene is a p-conducting organic semiconductor which is most often discussed in literature regarding OFETs and has been used in this work as a reference material for the developed preparation system. Pentacene was also used for the comparison of two different dielectric/organic interfaces: one interface was bare SiO2 and the second interface was SiO2 treated with a self assembling monolayer of octadecyltrichlorosilane (OTS). Additionally it was used to compare the top-contact configuration for OFETs of this work with the bottom-contact configuration discussed in literature. The electrical measurements revealed on the one hand an increase in the hole mobility by a factor of two and on the other hand also an enhanced stability against bias stress for the OTS treated sample. The threshold voltage remained unchanged. Using potentiometry the electrical potential distribution within the transistor channel could be obtained. No interface resistance at the organic/metal interface could be found for top-contact configuration, in opposite to the high interface resistance reported in literature for the bottom-contact configuration. The extracted electrical field distribution within the channel showed a symmetric behavior for the OTS treated sample while it was asymmetric for the untreated sample. Using spectroscopic ellipsometry the morphology of the n-conducting PTCDI derivatives DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI, and PDI-8CN2 could be revealed. The also determined dielectric functions are important for the use of the investigated organic semiconductors within opto-electronic devices. For a precise evaluation of large surface roughnesses, as found for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, a new ellipsometry model was developed. Using atomic force microscopy pictures a depth-dependent material concentration could be determined which was put into the ellipsometry model of surface roughness. This new model can fully replace the traditional model. The electrical measurements for the PTCDI derivatives revealed a considerable influence of the various side groups on the device performance. The electron mobility spread over four orders of magnitude and the threshold voltage deviated by up to 20 V. Additionally the influence of bias stress and thermal annealing revealed different and partially oppositional behavior regarding the change in electron mobility and threshold voltage. As all molecules showed optical isotropy, the molecule orientation could not be correlated with the charge carrier mobility. However, the very low electron mobilities of Diphenyl-PTCDI and DiMethoxyethyl-PTCDI could be correlated with island growth which extends the necessary path length for the charge carriers between the electrodes. Under ambient atmosphere none of the PTCDI derivatives - beside PDI-8CN2 - was working. Nevertheless, DiMe-PTCDI continued its functionality when it was brought back into the vacuum. An OTS treatment was applied for one PDI-8CN2 sample. This treatment, however, led to worse electrical characteristics.
59

Raman-Spektroskopie an epitaktischem Graphen auf Siliziumkarbid (0001)

Fromm, Felix Jonathan 29 April 2015 (has links) (PDF)
Die vorliegende Arbeit behandelt die Charakterisierung von epitaktischem Graphen auf Siliziumkarbid (0001) mittels Raman-Spektroskopie. Nach der Einführung theoretischer sowie experimenteller Grundlagen werden das Wachstum von Graphen auf Siliziumkarbid (SiC) behandelt und die untersuchten Materialsysteme vorgestellt. Es wird gezeigt, dass das Raman-Spektrum von epitaktischem Graphen auf SiC (0001) neben den Phononenmoden des Graphens und des Substrats weitere Signale beinhaltet, welche der intrinsischen Grenzflächenschicht, dem Buffer-Layer, zwischen Graphen und SiC zugeordnet werden können. Das Raman-Spektrum dieser Grenzflächenschicht kann als Abbild der phononischen Zustandsdichte interpretiert werden. Fortführend werden verspannungsinduzierte Änderungen der Phononenenergien der G- und 2D-Linie im Raman-Spektrum von Graphen untersucht. Dabei werden starke Variationen des Verspannungszustands beobachtet, welche mit der Topographie der SiC-Oberfläche korreliert werden können und erlauben, Rückschlüsse auf Wachstumsmechanismen zu ziehen. Die Entwicklung einer neuen Messmethode, bei der das Raman-Spektrum von Graphen durch das SiC-Substrat aufgenommen wird, ermöglicht die detektierte Raman-Intensität um über eine Größenordnung zu erhöhen. Damit wird die Raman-spektroskopische Charakterisierung eines Graphen-Feldeffekttransistors mit top gate ermöglicht und ein umfassendes Bild des Einflusses der Ladungsträgerkonzentration und der Verspannung auf die Positionen der G- und 2D-Raman-Linien von quasifreistehendem Graphen auf SiC erarbeitet.
60

Elektrische und spektroskopische Charakterisierung von organischen Feldeffekttransistor-Strukturen

Lehmann, Daniel 27 March 2009 (has links)
In dieser Arbeit werden die Resultate aus den elektrischen Untersuchungen an organischen Feldeffekttransistoren (OFETs) auf der Basis von Pentacen und von verschiedenen Perylentetracarbonsäurediimid-Derivaten (PTCDI) vorgestellt und diskutiert. Die PTCDI-Derivate wurden zudem mit der spektroskopischen Ellipsometrie hinsichtlich ihrer Morphologie und ihrer optischen Eigenschaften untersucht. Im Rahmen dieser Arbeit wurde ein System zur Herstellung und zur elektrischen Charakterisierung von OFET-Strukturen entwickelt. Dieses erlaubt die Herstellung von Strukturen bzw. Schichtsystemen unter gekühlten oder erhitzten Bedingungen im Hochvakuum. Die elektrische Vermessung kann danach direkt im Vakuum erfolgen, ohne das erzeugte Bauteil den Gasen der Umgebungsluft oder Licht auszusetzen, wodurch die Ergebnisse von den Einflüssen beider Faktoren unabhängig sind. Außerhalb des Vakuums fanden weitere Messmethoden Verwendung, um die Grenzflächeneinflüsse und das organische Schichtwachstum detailliert zu untersuchen und mit den Ergebnissen der elektrischen Messungen korrelieren zu können. Das in der Literatur bereits vielfach besprochene p-leitende Pentacen wurde einerseits als Referenzmaterial bei der Entwicklung der Herstellungsprozedur für die hier erzeugten OFETs eingesetzt, andererseits auch zum Vergleich zwischen sowohl mit hydrophobisierendem Octadecyltrichlorosilan (OTS) oberflächenbehandelten und -unbehandelten OFETs. Zudem wurde es auch zum Vergleich zwischen dem hier verwendeten Top-Kontakt-Aufbau und dem in der Literatur diskutierten Bottom-Kontakt-Aufbau verwendet. Die elektrischen Messungen offenbarten einerseits eine um den Faktor 2 höhere Lochmobilität und andererseits auch eine erhöhte Stabilität unter Spannungsbelastung der OTS-behandelten Probe gegenüber der Nichtbehandlung. Die Schwellspannung blieb unbeeinflusst. Unter Verwendung der Potentiometrie konnten ortsaufgelöste Spannungsverläufe in Abhängigkeit von der Position im Kanal aufgenommen werden. Dabei zeigte sich für die hier verwendeten Top-Kontakt-OFETs kein signifikanter Kontaktwiderstand zwischen Gold und Pentacen an der Grenzfläche der Source- und Drain-Elektroden, wie es in der Literatur für Bottom-Kontakt-OFETs berichtet wurde. Das extrahierte ortsaufgelöste elektrische Feld im Kanal erschien für die OTS-behandelte Probe symmetrisch, während die unbehandelte Probe einen asymmetrischen Verlauf aufwies. Mit Hilfe der spektroskopischen Ellipsometrie konnten Aussagen über die Morphologie der n-leitenden PTCDI-Derivate DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI und PDI-8CN2 getroffen werden. Die dabei im selben Prozess ermittelten dielektrischen Funktionen können für die Verwendung der untersuchten organischen Halbleiter in optoelektronischen Bauelementen von großer Bedeutung sein. Zur korrekten Beschreibung der unter DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auftretenden großen Oberflächenrauigkeiten wurde ein neues Ellipsometrie-Modell entwickelt, womit auch für diese Derivate die dielektrische Funktion bestimmt werden konnte. Ausgehend von den aus Rasterkraftmikroskopiebildern ermittelten tiefenabhängigen Materialdichteverteilungen wurde dabei ein angepasster Verlauf für die Materialdichte innerhalb der Rauigkeitsschicht entwickelt, welcher das traditionelle Modell vollständig ersetzen kann. Die elektrischen Messungen ergaben für die PTCDI-Derivate erheblich unterschiedliche Kenngrößen. Die verschiedenen Seitenketten führten dabei zu Unterschieden in der Elektronenmobilität von bis zu vier Größenordnungen. Ebenso wiesen die Schwellspannungen Differenzen bis 20 V auf. Des Weiteren zeigten sich unter elektrischer Belastung und nach einer thermischen Behandlung deutlich unterschiedliche und teilweise konträre Effekte hinsichtlich der Entwicklung der Elektronenmobilität und der Schwellspannung. Da alle untersuchten PTCDI-Derivate optisch isotrop aufwuchsen, konnte über der Molekülorientierung kein Bezug zur Ladungsträgermobilität gefunden werden. Jedoch konnten die sehr geringen Mobilitäten von DiPhenyl-PTCDI und DiMethoxyethyl-PTCDI auf deren Inselwachstum zurückgeführt werden, welches die nötige Pfadlänge für die Ladungsträger zwischen den Elektroden erhöhte. An Umgebungsluft stellten alle PTCDI-Derivate bis auf PDI-8CN2 ihre Funktionalität ein. Abgesehen von letzterem war DiMe-PTCDI nach erneutem Einbringen ins Vakuum und einer Erholungszeit von mehreren zehn Minuten wieder funktionstüchtig. Eine OTS-Behandlung wurde für PDI-8CN2 durchgeführt, um zu einem Vergleich mit den Ergebnissen von Pentacen zu gelangen. Es zeigte sich aber, dass nahezu alle elektrischen Eigenschaften von PDI-8CN2 durch diese Behandlung negativ beeinflusst wurden. / In this work the results of the electrical characterization of organic field-effect transistors (OFETs) based on pentacene and various derivatives of perylene tetracarboxylic diimide (PTCDI) are presented and discussed. The PTCDI derivatives were also characterized regarding their morphology and their optical properties using spectroscopic ellipsometry. A system for the preparation and electrical characterization of OFET structures was developed, which allows the preparation of thin film devices under cooled and annealed conditions, respectively, in high vacuum. The electrical measurements can be performed directly in vacuum without exposing the prepared device to the environmental gases or light making the results independent of these factors. Under ambient atmosphere further techniques have been used to study the growth of the organic layers in detail to correlate these results with the results of the electrical characterization. Pentacene is a p-conducting organic semiconductor which is most often discussed in literature regarding OFETs and has been used in this work as a reference material for the developed preparation system. Pentacene was also used for the comparison of two different dielectric/organic interfaces: one interface was bare SiO2 and the second interface was SiO2 treated with a self assembling monolayer of octadecyltrichlorosilane (OTS). Additionally it was used to compare the top-contact configuration for OFETs of this work with the bottom-contact configuration discussed in literature. The electrical measurements revealed on the one hand an increase in the hole mobility by a factor of two and on the other hand also an enhanced stability against bias stress for the OTS treated sample. The threshold voltage remained unchanged. Using potentiometry the electrical potential distribution within the transistor channel could be obtained. No interface resistance at the organic/metal interface could be found for top-contact configuration, in opposite to the high interface resistance reported in literature for the bottom-contact configuration. The extracted electrical field distribution within the channel showed a symmetric behavior for the OTS treated sample while it was asymmetric for the untreated sample. Using spectroscopic ellipsometry the morphology of the n-conducting PTCDI derivatives DiMe-PTCDI, DiPhenyl-PTCDI, DiMethoxyethyl-PTCDI, Di3Pentyl-PTCDI, DiHeptyl-PTCDI, and PDI-8CN2 could be revealed. The also determined dielectric functions are important for the use of the investigated organic semiconductors within opto-electronic devices. For a precise evaluation of large surface roughnesses, as found for DiPhenyl-PTCDI and DiMethoxyethyl-PTCDI, a new ellipsometry model was developed. Using atomic force microscopy pictures a depth-dependent material concentration could be determined which was put into the ellipsometry model of surface roughness. This new model can fully replace the traditional model. The electrical measurements for the PTCDI derivatives revealed a considerable influence of the various side groups on the device performance. The electron mobility spread over four orders of magnitude and the threshold voltage deviated by up to 20 V. Additionally the influence of bias stress and thermal annealing revealed different and partially oppositional behavior regarding the change in electron mobility and threshold voltage. As all molecules showed optical isotropy, the molecule orientation could not be correlated with the charge carrier mobility. However, the very low electron mobilities of Diphenyl-PTCDI and DiMethoxyethyl-PTCDI could be correlated with island growth which extends the necessary path length for the charge carriers between the electrodes. Under ambient atmosphere none of the PTCDI derivatives - beside PDI-8CN2 - was working. Nevertheless, DiMe-PTCDI continued its functionality when it was brought back into the vacuum. An OTS treatment was applied for one PDI-8CN2 sample. This treatment, however, led to worse electrical characteristics.

Page generated in 0.0879 seconds