• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Resonant spin dynamics and 3D-1D dimensional crossovers in ultracold Fermi gases / Dynamique de spin résonnante et croisements dimensionnels 3D-1D dans les gaz de Fermi ultra-froids

Reimann, Thomas 13 December 2018 (has links)
L’exploration de systèmes quantiques à N corps fortement corrélés représente l’un des domaines de recherche les plus stimulants de la physique contemporaine. Au cours des trente dernières années, les vapeurs diluées d’atomes neutres en suspension dans le vide et contrôlées par un laser sont devenues une plate-forme polyvalente et formidable pour l’étude de tels systèmes. L’intérêt principal réside dans la capacité d’ajuster arbitrairement la force de l’interaction atomique au moyen de résonances de Feshbach induites magnétiquement, ainsi que la possibilité de créer une large gamme de potentiels via des champs optiques précisément adaptés. Cette thèse présente les résultats récents de l’expérience FerMix, consacrée à l’étude des systèmes quantiques à plusieurs corps fermioniques à des températures ultra-basses utilisant les atomes alcalins 40K et 6Li. Les principaux résultats présentés dans ce texte sont doubles. Premièrement, nous rapportons la caractérisation expérimentale d’une nouvelle résonance de Feshbach (s,d)-wave du 40K, dont les résultats sont comparés aux prédictions théoriques correspondantes. En particulier, le spectre du taux de perte inélastique est déterminé pour différentes températures et profondeurs de piège, ce qui nous permet d’identifier les pertes en tant que processus à deux corps. De plus, il est confirmé que le canal d’entrée dominant est de type s-wave. À l’aide de modèles d’équation de taux, nous analysons le réchauffement observé de l’ensemble atomique et trouvons que le comportement est cohérent avec l’état lié prévu L = 2 présent dans le canal de sortie. Enfin, nous étudions expérimentalement la dynamique des populations de spin induite par les collisions inélastiques renforcées par résonance dans l’onde d, en observant un bon accord avec nos modèles numériques. En second lieu, nous résumons nos progrès dans l’étude des croisements dimensionnels entre le liquide de Tomonaga-Luttinger en 1D et le liquide de Landau-Fermi en 3D en utilisant les gaz de Fermi de 40K confinés dans un réseau optique à grand pas. Cela inclut à la fois les considérations de conception fondamentales et l’installation du matériel expérimental requis. / The exploration of strongly correlated quantum many-body systems represents one of the most challenging fields of research of contemporary physics. Over the past thirty years, dilute vapors of neutral atoms suspended in vacuum and controlled with laser light have become a versatile and powerful platform for the study of such systems. At the very heart lies the ability to arbitrarily tune the interaction strength by means of magnetically induced Feshbach resonances as well as the possibility to create a wide range of potential landscapes via precisely tailored optical fields. This thesis reports on the recent results of the FerMix experiment, which is dedicated to the study of fermionic quantum many-body-systems at ultralow temperatures using the Alkali atoms 40K and 6Li. The main results presented in this text are twofold. First, we report on the experimental characterization of a novel (s,d)-wave Feshbach resonance in 6Li, the results of which are compared to the corresponding theoretical predictions. In particular, the spectrum of the inelastic loss rate is determined for different temperatures and trap depths, which enables us to identify the losses as two-body processes. Moreover, the dominant entrance channel is confirmed to be s-wave in nature. Using rate equation models we analyze the observed heating of the atomic ensemble and find the behavior to be consistent with the predicted L = 2 bound state present in the exit channel. Finally, we investigate experimentally the dynamics of the spin populations driven by resonantly enhanced inelastic collisions in dwave, observing good agreement with our numerical models. Second, we summarize our progress towards the study of dimensional crossovers between the Tomonaga-Luttinger liquid in 1D and the Landau-Fermi liquid in 3D using Fermi gases of 40K confined in a large spacing optical lattice. This includes both the fundamental design considerations as well as the implementation of the required experimental hardware.
12

Fermions and Bosons on an Atom Chip

Extavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF , and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
13

Fermions and Bosons on an Atom Chip

Extavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence. This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate, and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF , and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
14

Ultra Cold Fermions : Dimensional Crossovers, Synthetic Gauge Fields and Synthetic Dimensions

Ghosh, Sudeep Kumar January 2016 (has links) (PDF)
Ultracold atomic systems have provided an ideal platform to study the physics of strongly interacting many body systems in an unprecedentedly controlled and clean environment. And, since fermions are the building blocks of visible matter, being naturally motivated we focus on the physics of ultracold fermionic systems in this thesis. There have been many recent experimental developments in these systems such as the creation of synthetic gauge fields, realization of dimensional crossover and realization of systems with synthetic dimensions. These developments pose many open theoretical questions, some of which we address in this thesis. We start the discussion by studying the spectral function of an ideal spin-12 Fermi gas in a harmonic trap in any dimensions. We discuss the performance of the local density approximation (LDA) in calculating the spectral function of the system by comparing it to exact numerical results. We show that the LDA gives better results for larger number of particles and in higher dimensions. Fermionic systems with quasi two dimensional geometry are of great importance because of their connections to the high-Tc superconducting cuprate materials. Keeping this in mind, we consider a spin-12 fermionic system in three dimensions interacting with a contact interaction and confined by a one dimensional optical potential in one direction. Using the Bogoliubov-de Gennes formalism, we show that with increasing the depth of the optical potential the three dimensional superfluid evolves into a two dimensional one by looking at the shifts in the radio-frequency spectrum of the system and the change in the binding energy of the pairs that are formed. The next topic of interest is studying the effect of synthetic gauge fields on the ultracold fermionic systems. We show that a synthetic non-Abelian Rashba type gauge field has experimentally observable signatures on the size and shape of a cloud of a system of non-interacting spin-12 Fermi system in a harmonic trap. Also, the synthetic gauge field in conjunction with the harmonic potential gives rise to ample possibilities of generating novel quantum Hamiltonians like the spherical geometry quantum Hall, magnetic monopoles etc. We then address the physics of fermions in “synthetic dimensions”. The hyperfine states of atoms loaded in a one dimensional optical lattice can be used as an extra dimension, called the synthetic dimension (SD), by using Raman coupling. This way a finite strip Hofstadter model is realized with a tunable flux per plaquette. The experimental realization of the SD system is most naturally possible in systems which also have SU(M) symmetric interactions between the fermions. The SU(M) symmetric interactions manifest as long-ranged along the synthetic dimension and is the root cause of all the novel physics in these systems. This rich physics is revealed by a mapping of the Hamiltonian of the system to a system of particles interacting via an SU(M) symmetric interaction under the influence of an SU(M) Zeeman field and a non-Abelian SU(M) gauge field. For example, this equivalence brings out the possibility of generating a non-local interaction between the particles at different sites; while the gauge filed mitigates the baryon (SU(M) singlet M-body bound states) breaking effect of the Zeeman field. As a result, the site localized SU(M) singlet baryon gets deformed and forms a “squished baryon”. Also, finite momentum dimers and resonance like states are formed in the system. Many body physics in the SD system is then studied using both analytical and numerical (Density Matrix Renormalization Group) techniques. This study reveals fascinating possibilities such as the formation of Fulde-Ferrell-Larkin-Ovchinnikov states even without any “imbalance” and the possibility to evolve a “ferromagnet” to a “superfluid” by the application of a magnetic field. Other novel fermionic phases with quasi-condensates of squished baryons are also demonstrated. In summary, the topics addressed in this thesis demonstrate the possibilities and versatilities of the ultracold fermionic systems used in conjunction with synthetic gauge fields and dimensions
15

Cohérence, brouillage et dynamique de phase dans un condensat de paires de fermions / Coherence, blurring and phase dynamics in a pair-condensed Fermi gas

Kurkjian, Hadrien 19 May 2016 (has links)
On considère généralement que la fonction d’onde macroscopique décrivant un condensat de paires de fermions possède une phase parfaitement définie et immuable. En réalité, il n’existe que des systèmes de taille finie, préparés à température non nulle ; le condensat possède alors un temps de cohérence fini, même lorsque le système est isolé. Cet effet fondamental, crucial pour les applications qui exploitent la cohérence macroscopique, restait très peu étudié.Dans cette thèse, nous relions le temps de cohérence à la dynamique de phase du condensat, et nous montrons par une approche microscopique que la dérivée temporelle de l’opérateur phase ˆθ0 est proportionnelle à un opérateur potentiel chimique qui inclut les deux branches d’excitations du gaz : celle, fermionique, de brisure des paires et celle, bosonique, de mise en mouvement de leur centre de masse. Pour une réalisation donnée de l’énergie E et du nombre de particules N, la phase évolue aux temps longs comme −2μmc(E,N)t/~ où μmc(E,N) est le potentiel chimique microcanonique ; les fluctuations de E et de N d’une réalisation à l’autre conduisent alors à un brouillage balistique de la phase, et à une décroissance gaussienne de la fonction de cohérence temporelle avec un temps caractéristique ∝ N1/2. En l’absence de telles fluctuations, la décroissance est au contraire exponentielle avec un temps de cohérence qui diverge linéairement en N à cause du mouvement diffusif de ˆθ0 dans l’environnement des modes excités. Nous donnons une expression explicite de ce temps caractéristique à bassetempérature dans le cas d’une branche d’excitation bosonique convexe lorsque les phonons interagissent via les processus 2 ↔ 1 de Beliaev-Landau. Enfin, nous proposons des méthodes permettant de mesurer avec un gaz d’atomes froids chaque contribution au temps de cohérence / It is generally assumed that a condensate of paired fermions at equilibrium is characterized by a macroscopic wavefunction with a well-defined, immutable phase. In reality, all systems have a finite size and are prepared at non-zero temperature ; the condensate has then a finite coherence time, even when the system is isolated. This fundamental effect, crucial for applicationsusing macroscopic coherence, was scarcely studied. Here, we link the coherence time to the condensate phase dynamics, and show using a microscopic theory that the time derivative of the condensate phase operator ˆθ0 is proportional to a chemical potential operator which includes both the fermionic pair-breaking and the bosonic pair-motion excitation branches.For a given realization of the number of particle N and of the energy E, the phase evolves at long times as −2μmc(E,N)t/~ where μmc(E,N) is the microcanonical chemical potential ; fluctuations of N and E from one realization to the other then lead to a ballistic spreading of the phase and to a Gaussian decay of the temporal coherence function with a characteristictime ∝ N1/2. On the contrary, in the absence of energy and number fluctuations, the decay of the temporal coherence function is exponential with a characteristic time scaling as N due to the diffusive motion of ˆθ0 in the environnement created by the excited modes. We give an explict expression of this characteristic time at low temperature in the case where the bosonicbranch is convex and the phonons undergo 2 ↔ 1 Beliaev-Landau process. Finally, we propose methods to measure each contribution to the coherence time using ultracold atoms.

Page generated in 0.0433 seconds