• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 2
  • Tagged with
  • 18
  • 15
  • 10
  • 10
  • 10
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anwendung und Weiterentwicklung der Methodik der Umweltbilanzierung beim Abbau von Festgestein

Schmieder, Pierre 18 December 2007 (has links)
In dieser Arbeit wird die Methodik der Umweltbilanzierung beim Abbau von Festgestein vorgestellt und weiterentwickelt. Die Methodik, welche zuerst als überschlägige Untersuchung verschiedener Abbauverfahren, wie Bohren und Sprengen, vertikales und horizontales Reißen, vertikales und horizontales Fräsen und Schlagen, durchgeführt wird, findet in einem weiteren Schritt an zwei Abbauverfahren in detaillierter Form Anwendung. Für diese Abbauverfahren werden die ökologischen Aspekte: Lärm, Staub, Erschütterungen, Flächeninanspruchnahme, gasförmige Emissionen und der Kumulierte Energieaufwand sowie der ökonomische Aspekt: Finanzmathematische Durchschnittskosten rechnerisch ermittelt. Die abschließende Bewertung nach einem nutzwertkostenanalytischen Ansatz berücksichtigt die ökologischen Aspekte als Summe der relativen Skalierungswerte und die Finanzmathematischen Durchschnittskosten absolut mit dem Ergebnis, dass das Bohren und Sprengen sowohl umweltverträglicher als auch wirtschaftlicher ist als das Schlagen.
12

Brazilian test on anisotropic rocks: laboratory experiment, numerical simulation and interpretation

Dinh, Quoc Dan 09 February 2011 (has links)
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab. A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc. There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material.:ACKNOWLEDGMENTS 5 ABSTRACT 7 TABLE OF CONTENTS 9 LIST OF FIGURES 13 LIST OF TABLES 19 I. INTRODUCTION 21 Objective of this work 22 Scope of work 23 Research procedure 23 Significance of the work 24 Layout 24 1 STATE OF THE ART 27 1.1 Review of the Brazilian tensile strength test 27 1.1.1 General overview 27 1.1.2 Development of the Brazilian tensile strength test 29 1.1.3 The Brazilian tensile strength test on anisotropic rocks 31 1.1.4 Summary 32 1.2 Analytical aspects 33 1.2.1 Hypotheses for the conventional Brazilian test 34 1.2.2 Failure criteria 36 1.2.3 Crack initiation and propagation 39 1.2.4 Summary 41 1.3 Numerical considerations 41 1.3.1 Numerical methods 42 1.3.2 Summary 42 1.4 Conclusion 43 2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45 2.1 Introduction 45 2.2 Diametral compressive stress distribution in an isotropic elastic disc 45 2.2.1 Elastic theory of line load 46 2.2.2 2D analytical solutions 47 2.2.3 3D disc under line and diametral compressive distributed loads 55 2.2.4 3D solution under diametral compressive distributed load 56 2.3 Stress and strain in an isotropic solid disc 59 2.4 Stress and strain in anisotropic rocks 61 2.5 Conclusion 65 3 LABORATORY TESTS 69 3.1 Introduction 69 3.2 Laboratory test program 70 3.3 Sample preparation 71 3.4 Ultrasonic measurements 72 3.5 Uniaxial and triaxial compression tests 73 3.5.1 Uniaxial compression test 73 3.5.2 Triaxial compression tests 74 3.6 Brazilian tensile strength tests 76 3.6.1 Test apparatus 76 3.6.2 Laboratory test results 77 3.6.3 Interpretation of the test results 89 3.7 Conclusion 96 4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97 4.1 Introduction 97 4.2 Numerical simulation of isotropic materials 97 4.2.1 FLAC3D simulation program 97 4.2.2 Simulation procedure 98 4.2.3 Numerical model setup 98 4.2.4 Influence of mesh type 99 4.2.5 Influence of specimen thickness 100 4.2.6 Influence of Poisson’s ratio 102 4.2.7 Influence of loading angle (2) 106 4.2.8 Comparison of 3D analytical and numerical results 110 4.2.9 Influence of stress concentration at the loading jaws 112 4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112 4.4 Conclusion 114 5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117 5.1 Introduction 117 5.2 General procedure for simulating the Brazilian test using FLAC3D 117 5.2.1 Conceptual model 119 5.2.2 Boundary Conditions 119 5.2.3 Numerical model set-up 120 5.3 Constitutive model 121 5.3.1 Choice of constitutive model 121 5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121 5.4 Parameter calibration 124 5.4.1 Material parameters used 124 5.4.2 Contact between disc and loading jaws 126 5.4.3 Post-failure deformation properties 128 5.4.4 Tension cut-off 129 5.5 Numerical simulation results 131 5.5.1 Introduction 131 5.5.2 Stress distribution and failure state 133 5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136 5.5.4 Plasticity states 139 5.5.5 Damage and fracture process 141 5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148 5.6 Tensile strength – Comparison of lab results and numerical simulations 149 5.6.1 Tensile strength of Le.Gs Gneiss 150 5.6.2 Tensile strength of My.Sc Slate 155 5.7 Summary and Review 159 5.7.1 Potential failure state deduced from pure elastic considerations 159 5.7.2 Tensile strength distribution 160 5.7.3 Tensile strength – determining the anisotropy factor 161 5.7.4 Tensile strength – different procedures - different results 163 6 CONCLUSION AND RECOMMENDATIONS 165 APPENDICES 171 Appendix 3.1 - Fracture patterns in FG.Ss samples 171 Appendix 3.2 - Fracture patterns in FG.Gs samples 177 Appendix 3.3 - Fracture patterns in Le.Gs samples 183 Appendix 3.4 - Fracture patterns in My.Sc samples 190 Appendix 4.1 - Influence of loading angle 197 Appendix 4.2 - Influence of material properties 203 Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209 Appendix 5.2: Failure zone state in My.Sc Slate 216 REFERENCES 223 / Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht. Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen. Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen.:ACKNOWLEDGMENTS 5 ABSTRACT 7 TABLE OF CONTENTS 9 LIST OF FIGURES 13 LIST OF TABLES 19 I. INTRODUCTION 21 Objective of this work 22 Scope of work 23 Research procedure 23 Significance of the work 24 Layout 24 1 STATE OF THE ART 27 1.1 Review of the Brazilian tensile strength test 27 1.1.1 General overview 27 1.1.2 Development of the Brazilian tensile strength test 29 1.1.3 The Brazilian tensile strength test on anisotropic rocks 31 1.1.4 Summary 32 1.2 Analytical aspects 33 1.2.1 Hypotheses for the conventional Brazilian test 34 1.2.2 Failure criteria 36 1.2.3 Crack initiation and propagation 39 1.2.4 Summary 41 1.3 Numerical considerations 41 1.3.1 Numerical methods 42 1.3.2 Summary 42 1.4 Conclusion 43 2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45 2.1 Introduction 45 2.2 Diametral compressive stress distribution in an isotropic elastic disc 45 2.2.1 Elastic theory of line load 46 2.2.2 2D analytical solutions 47 2.2.3 3D disc under line and diametral compressive distributed loads 55 2.2.4 3D solution under diametral compressive distributed load 56 2.3 Stress and strain in an isotropic solid disc 59 2.4 Stress and strain in anisotropic rocks 61 2.5 Conclusion 65 3 LABORATORY TESTS 69 3.1 Introduction 69 3.2 Laboratory test program 70 3.3 Sample preparation 71 3.4 Ultrasonic measurements 72 3.5 Uniaxial and triaxial compression tests 73 3.5.1 Uniaxial compression test 73 3.5.2 Triaxial compression tests 74 3.6 Brazilian tensile strength tests 76 3.6.1 Test apparatus 76 3.6.2 Laboratory test results 77 3.6.3 Interpretation of the test results 89 3.7 Conclusion 96 4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97 4.1 Introduction 97 4.2 Numerical simulation of isotropic materials 97 4.2.1 FLAC3D simulation program 97 4.2.2 Simulation procedure 98 4.2.3 Numerical model setup 98 4.2.4 Influence of mesh type 99 4.2.5 Influence of specimen thickness 100 4.2.6 Influence of Poisson’s ratio 102 4.2.7 Influence of loading angle (2) 106 4.2.8 Comparison of 3D analytical and numerical results 110 4.2.9 Influence of stress concentration at the loading jaws 112 4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112 4.4 Conclusion 114 5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117 5.1 Introduction 117 5.2 General procedure for simulating the Brazilian test using FLAC3D 117 5.2.1 Conceptual model 119 5.2.2 Boundary Conditions 119 5.2.3 Numerical model set-up 120 5.3 Constitutive model 121 5.3.1 Choice of constitutive model 121 5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121 5.4 Parameter calibration 124 5.4.1 Material parameters used 124 5.4.2 Contact between disc and loading jaws 126 5.4.3 Post-failure deformation properties 128 5.4.4 Tension cut-off 129 5.5 Numerical simulation results 131 5.5.1 Introduction 131 5.5.2 Stress distribution and failure state 133 5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136 5.5.4 Plasticity states 139 5.5.5 Damage and fracture process 141 5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148 5.6 Tensile strength – Comparison of lab results and numerical simulations 149 5.6.1 Tensile strength of Le.Gs Gneiss 150 5.6.2 Tensile strength of My.Sc Slate 155 5.7 Summary and Review 159 5.7.1 Potential failure state deduced from pure elastic considerations 159 5.7.2 Tensile strength distribution 160 5.7.3 Tensile strength – determining the anisotropy factor 161 5.7.4 Tensile strength – different procedures - different results 163 6 CONCLUSION AND RECOMMENDATIONS 165 APPENDICES 171 Appendix 3.1 - Fracture patterns in FG.Ss samples 171 Appendix 3.2 - Fracture patterns in FG.Gs samples 177 Appendix 3.3 - Fracture patterns in Le.Gs samples 183 Appendix 3.4 - Fracture patterns in My.Sc samples 190 Appendix 4.1 - Influence of loading angle 197 Appendix 4.2 - Influence of material properties 203 Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209 Appendix 5.2: Failure zone state in My.Sc Slate 216 REFERENCES 223
13

Shear behavior of plane joints under CNL and DNL conditions: Lab testing and numerical simulation

Dang, Wengang 21 February 2017 (has links)
The aim of this research work is to deepen the understanding of joint shear behavior under different boundary conditions. For this purpose, joint closure tests under quasi-static and dynamic conditions, direct shear and cyclic shear tests under CNL and DNL boundary conditions of plane joints are performed using GS-1000 big shear box device. The dissertation also presents the procedure to simulate the shear box device and simulating the behavior of plane joints at the micro-scale using FLAC3D. Special attention has been given to understand the influencing factors of the normal stress level, direct shear rate, horizontal cyclic shear frequency, normal impact frequency, horizontal cyclic shear displacement amplitude and vertical impact force amplitude. Lab test and numerical simulation results show that the quasi-static joint stiffness increases with increasing normal force. Dynamic joint stiffness decreases with increasing superimposed normal force amplitudes. Normal impact frequencies have little influence on the joint stiffness. Rotations and stress changes at the plane joint during shearing are proven. Rotations and development of stress gradients can be decreased significantly by increasing the size of the bottom specimen and applying a shear velocity at the upper shear box and normal loading piston. Furthermore, peak shear force increases with increasing normal force. Friction angle of cyclic shear tests is smaller than that of direct shear tests. Moreover, significant time shifts between normal and shear force (shear force delay), normal force and friction coefficient (friction coefficient delay) during direct shear tests under DNL boundary conditions are observed and the reference quantity ‘shear-velocity-normal-impact-frequency’ (SV-NIF) to describe the behavior under DNL boundary conditions is defined. Peak shear force and minimum friction coefficient increase with increasing SV-NIF. Relative time shift between normal force and shear force decreases with increase of SV-NIF. The mechanical behavior of the GS-1000 big shear box device is simulated and the loss of normal force caused by the tilting of the loading plate is quantified. Finally, the novel direct and cyclic shear strength criterions under DNL conditions are put forward. The shear strength criterions are in close agreement with the measured values, which indicates that the novel shear strength criterions are able to predict the shear strength under DNL conditions.
14

Behavior of jointed rock masses: numerical simulation and lab testing

Chang, Lifu 19 June 2019 (has links)
The anisotropic behavior of a rock mass with persistent and planar joint sets is mainly governed by the geometrical and mechanical characteristics of the joints. The aim of the study is to develop a continuum-based approach for simulation of multi jointed geomaterials. There are two available numerical techniques for the strain-stress analysis of rock masses: continuum-based methods and discontinuum based methods. Joints are simulated explicitly in discontinuous methodology. This technique provides a more accurate description for the behavior of a rock mass. However, in some projects, the explicit definition becomes impractical, especially with increasing number of joints. Besides, the calculation efficiency will be significant reduced as the number of joints increases within the model. Considering the above mentioned shortcomings of the discontinuous method, the continuum-based approach is widely used in rock mechanics. Within the continuum methods, the discontinuities are regarded as smeared cracks in an implicit manner and all the joint parameters are incorporated into the equivalent constitutive equations. A new equivalent continuum model, called multi-joint model, is developed for jointed rock masses which may contain up to three arbitrary persistent joint sets. The Mohr-Coulomb yield criterion is used to check failure of the intact rock and the joints. The proposed model has solved the issue of multiple plasticity surfaces involved in this approach combined with multiple failure mechanisms. The multi-joint model is implemented into FLAC and is verified against the distinct element method (UDEC), analytical solutions, and experimental data. Uniaxial compression tests with artificial rock-like material (gypsum) are carried out in the laboratory in order to verify the developed constitutive model and to investigate the behavior of jointed specimen. Samples with two crossing joints covering more than 20 angle configurations and two different property sets were prepared and tested. Simulation results are in good agreement with experimental observations. The developed model is applied to two potential practical applications: the stability analysis of a slope and a tunnel under different stress conditions. Finally, the main achievements of the whole PhD study are summarized and future research work is proposed.
15

Prognose von Aktivierungsparametern für die maschinelle Gewinnung hochfester Gesteine

Keller, Andreas 19 July 2021 (has links)
Die maschinelle Gewinnung ist in der Lage, den verantwortungsvollen Umgang mit Lagerstätten und die Sicherheit in Bergwerken zu erhöhen. Dennoch hat sie sich bisher nicht in gekurvten Strecken und in untertägigen Abbauen des Festgesteinsbergbaus etablieren können. Es wird daher überprüft, welche Aktivierungsparameter nötig sind, um den Anwendungsbereich der schrämenden Werkzeuge auf hochfeste Gesteine zu erweitern. Anhand von sechs Gesteinen werden einerseits die Leistungsfähigkeit des schrämenden Lösens und die Herausforderungen mit zunehmender Festigkeit der Gesteine, andererseits das schlagende Lösen und sein potenzieller Beitrag zur Leistungssteigerung untersucht. Dazu erfolgt die systematische Bestimmung der Gewinnungsparameter und die der gegenseitigen Abhängigkeiten. Am Einzelmeißel werden Orientierung, Schlagenergie, Abstand und Abfolge von Einzelschlägen untersucht, um eine Prognose für günstige Aktivierungsparameter geben zu können. Die Ergebnisse fließen in das Rechenmodell eines rotierenden Gewinnungsorgans, das die Spanleistung und wichtige Parameter der Gewinnung wahlweise mit oder ohne Aktivierung bestimmt. Der darauffolgende Vergleich der beiden Konzepte ermittelt anhand von zwei Gesteinen die jeweilige Vorzugsvariante.
16

Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility study

Demmler, Christoph 07 January 2022 (has links)
This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements.:1 Introduction 1.1 Borehole acoustic configurations 1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool 1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool 1.4 Anisotropy 2 Theory 2.1 Stiffness and compliance tensor 2.1.1 Triclinic symmetry 2.1.2 Monoclinic symmetry 2.1.3 Orthotropic symmetry 2.1.4 Transverse isotropic (TI) symmetry 2.1.5 Isotropy 2.2 Reference frames 2.3 Seismic wave equations for a linear elastic, anisotropic medium 2.3.1 Basic equations 2.3.2 Integral transforms 2.3.3 Christoffel equation 2.3.4 Phase slowness surfaces 2.3.5 Group velocity 2.4 Solution in cylindrical coordinates for the borehole geometry 2.4.1 Special case: vertical transverse isotropy (VTI) 2.4.2 General case: triclinic symmetry 3 Finite-difference modeling of wave propagation in anisotropic media 3.1 Finite-difference method 3.2 Spatial finite-difference grids 3.2.1 Standard staggered grid 3.2.2 Lebedev grid 3.3 Heterogeneous media 3.4 Finite-difference properties and grid dispersion 3.5 Initial conditions 3.6 Boundary conditions 3.7 Parallelization 3.8 Finite-difference parameters 4 Wave propagation in fluid-filled boreholes surrounded by TI media 4.1 Vertical transverse isotropy (VTI) 4.1.1 Monopole excitation 4.1.2 Dipole excitation 4.1.3 Quadrupole excitation 4.1.4 Summary 4.2 Horizontal transverse isotropy (HTI) 4.2.1 Monopole excitation 4.2.2 Theory of cross-multipole shear wave splitting 4.2.3 Dipole excitation 4.2.4 Quadrupole excitation 4.2.5 Hexapole waves 4.2.6 Summary 4.3 Tilted transverse isotropy (TTI) 4.3.1 Monopole excitation 4.3.2 Dipole excitation 4.3.3 Quadrupole excitation 4.3.4 Summary 4.4 Anisotropy-induced mode contaminants 4.4.1 Vertical transverse isotropy (VTI) 4.4.2 Horizontal transverse isotropy (HTI) 4.4.3 Tilted transverse isotropy (TTI) 4.4.4 Summary 5 Inversion methods 5.1 Vertical transverse isotropy (VTI) 5.2 Horizontal transverse isotropy (HTI) 5.2.1 Inverse generalized Alford rotation 5.2.2 Inversion method based on dipole excitations 5.2.3 Inversion method based on quadrupole excitations 5.3 Tilted transverse isotropy (TTI) 5.4 Challenges in real measurements 5.4.1 Signal-to-noise ratio (SNR) 5.4.2 Tool eccentricity 6 Conclusions References List of Abbreviations and Symbols List of Figures List of Tables A Integral transforms A.1 Laplace transform A.2 Spatial Fourier transform A.3 Azimuthal Fourier transform A.4 Meijer transform B Stiffness and compliance tensor B.1 Rotation between reference frames B.2 Cylindrical coordinates C Christoffel equation C.1 Cartesian coordinates C.2 Cylindrical coordinates D Processing of borehole acoustic waveform array data D.1 Time-domain methods D.2 Frequency-domain methods D.2.1 Weighted spectral semblance method D.2.2 Modified matrix pencil method
17

Hydro-mechanical coupled behavior of brittle rocks: laboratory experiments and numerical simulations

Tan, Xin 16 January 2014 (has links)
‘Coupled process’ implies that one process affects the initiation and progress of the others and vice versa. The deformation and damage behaviors of rock under loading process change the fluid flow field within it, and lead to altering in permeable characteristics; on the other side inner fluid flow leads to altering in pore pressure and effective stress of rock matrix and flow by influencing stress strain behavior of rock. Therefore, responses of rock to natural or man-made perturbations cannot be predicted with confidence by considering each process independently. As far as hydro-mechanical behavior of rock is concerned, the researchers have always been making efforts to develop the model which can represent the permeable characteristics as well as stress-strain behaviors during the entire damage process. A brittle low porous granite was chosen as the study object in this thesis, the aim is to establish a corresponding constitutive law including the relation between permeability evolution and mechanical deformation as well as the rock failure behavior under hydro-mechanical coupled conditions based on own hydro-mechanical coupled lab tests. The main research works of this thesis are as follows: 1. The fluid flow and mechanical theoretical models have been reviewed and the theoretical methods to solve hydro-mechanical coupled problems of porous medium such as flow equations, elasto-plastic constitutive law, and Biot coupled control equations have been summarized. 2. A series of laboratory tests have been conducted on the granite from Erzgebirge–Vogtland region within the Saxothuringian segment of Central Europe, including: permeability measurements, ultrasonic wave speed measurements, Brazilian tests, uniaxial and triaxial compression tests. A hydro-mechanical coupled testing system has been designed and used to conduct drained, undrained triaxial compression tests and permeability evolution measurements during complete loading process. A set of physical and mechanical parameters were obtained. 3. Based on analyzing the complete stress-strain curves obtained from triaxial compression tests and Hoek-Brown failure criterion, a modified elemental elasto-plastic constitutive law was developed which can represent strength degradation and volume dilation considering the influence of confining pressure. 4. The mechanism of HM-coupled behavior according to the Biot theory of elastic porous medium is summarized. A trilinear evolution rule for Biot’s coefficient based on the laboratory observations was deduced to eliminate the error in predicting rock strength caused by constant Biot’s coefficient. 5. The permeability evolution of low porous rock during the failure process was described based on literature data and own measurements, a general rule for the permeability evolution was developed for the laboratory scale, a strong linear relation between permeability and volumetrical strain was observed and a linear function was extracted to predict permeability evolution during loading process based on own measurements. 6. By combining modified constitutive law, the trilinear Biot’s coefficient evolution model and the linear relationship between permeability and volumetrical strain, a fully hydro-mechanical coupled numerical simulation scheme was developed and implemented in FLAC3D. A series of numerical simulations of triaxial compression test considering the hydro-mechanical coupling were performed with FLAC3D. And a good agreement was found between the numerical simulation results and the laboratory measurements under 20 MPa confining pressure and 10 MPa fluid pressure, the feasibility of this fully hydro-mechanical coupled model was proven.
18

Cutting force component-based rock differentiation utilising machine learning

Grafe, Bruno 02 August 2023 (has links)
This dissertation evaluates the possibilities and limitations of rock type identification in rock cutting with conical picks. For this, machine learning in conjunction with features derived from high frequency cutting force measurements is used. On the basis of linear cutting experiments, it is shown that boundary layers can be identified with a precision of less than 3.7 cm when using the developed programme routine. It is further shown that rocks weakened by cracks can be well identified and that anisotropic rock behaviour may be problematic to the classification success. In a case study, it is shown that the supervised algorithms artificial neural network and distributed random forest perform relatively well while unsupervised k-means clustering provides limited accuracies for complex situations. The 3d-results are visualised in a web app. The results suggest that a possible rock classification system can achieve good results—that are robust to changes in the cutting parameters when using the proposed evaluation methods.:1 Introduction...1 2 Cutting Excavation with Conical Picks...5 2.1 Cutting Process...8 2.1.2 Cutting Parameters...11 2.1.3 Influences of Rock Mechanical Properties...17 2.1.4 Influences of the Rock Mass...23 2.2 Ratios of Cutting Force Components...24 3 State of the Art...29 3.1 Data Analysis in Rock Cutting Research...29 3.2 Rock Classification Systems...32 3.2.1 MWC – Measure-While-Cutting...32 3.2.2 MWD – Measuring-While-Drilling...34 3.2.3 Automated Profiling During Cutting...35 3.2.4 Wear Monitoring...36 3.3 Machine learning for Rock Classification...36 4 Problem Statement and Justification of Topic...38 5 Material and Methods...40 5.1 Rock Cutting Equipment...40 5.2 Software & PC...42 5.3 Samples and Rock Cutting Parameters...43 5.3.1 Sample Sites...43 5.3.2 Experiment CO – Zoned Concrete...45 5.3.3 Experiment GN – Anisotropic Rock Gneiss...47 5.3.4 Experiment GR – Uncracked and Cracked Granite...49 5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores...50 5.4 Data Processing...53 5.5 Force Component Ratio Calculation...54 5.6 Procedural Selection of Features...57 5.7 Image-Based Referencing and Rock Boundary Modelling...60 5.8 Block Modelling and Gridding...61 5.9 Correlation Analysis...63 5.10 Regression Analysis of Effect...64 5.11 Machine Learning...65 5.11.2 K-Means Algorithm...66 5.11.3 Artificial Neural Networks...67 5.11.4 Distributed Random Forest...70 5.11.5 Classification Success...72 5.11.6 Boundary Layer Recognition Precision...73 5.12 Machine Learning Case Study...74 6 Results...75 6.1 CO – Zoned Concrete...75 6.1.1 Descriptive Statistics...75 6.1.2 Procedural Evaluation...76 6.1.3 Correlation of the Covariates...78 6.1.4 K-Means Cluster Analysis...79 6.2 GN – Foliated Gneiss...85 6.2.1 Cutting Forces...86 6.2.2 Regression Analysis of Effect...88 6.2.3 Details Irregular Behaviour...90 6.2.4 Interpretation of Anisotropic Behaviour...92 6.2.5 Force Component Ratios...92 6.2.6 Summary and Interpretations of Results...93 6.3 CR – Cracked Granite...94 6.3.1 Force Component Results...94 6.3.2 Spatial Analysis...97 6.3.3 Error Analysis...99 6.3.4 Summary...100 6.4 Case Study...100 6.4.1 Feature Distribution in Block Models...101 6.4.2 Distributed Random Forest...105 6.4.3 Artificial Neural Network...107 6.4.4 K-Means...110 6.4.5 Training Data Required...112 7 Discussion...114 7.1 Critical Discussion of Experimental Results...114 7.1.1 Experiment CO...114 7.1.2 Experiment GN...115 7.1.3 Experiment GR...116 7.1.4 Case Study...116 7.1.5 Additional Outcomes...117 7.2 Comparison of Machine Learning Algorithms...118 7.2.1 K-Means...118 7.2.2 Artificial Neural Networks and Distributed Random Forest...119 7.2.3 Summary...120 7.3 Considerations Towards Sensor System...121 7.3.1 Force Vectors and Data Acquisition Rate...121 7.3.2 Sensor Types...122 7.3.3 Computation Speed...123 8 Summary and Outlook...125 References...128 Annex A Fields of Application of Conical Tools...145 Annex B Supplements Cutting and Rock Parameters...149 Annex C Details Topic-Analysis Rock Cutting Publications...155 Annex D Details Patent Analysis...157 Annex E Details Rock Cutting Unit HSX-1000-50...161 Annex F Details Used Pick...162 Annex G Error Analysis Cutting Experiments...163 Annex H Details Photographic Modelling...166 Annex I Laser Offset...168 Annex J Supplements Experiment CO...169 Annex K Supplements Experiment GN...187 Annex L Supplements Experiment GR...191 Annex M Preliminary Artificial Neural Network Training...195 Annex N Supplements Case Study (CD)...201 Annex O R-Codes (CD)...203 Annex P Supplements Rock Mechanical Tests (CD)...204 / Die Dissertation evaluiert Möglichkeiten und Grenzen der Gebirgserkennung bei der schneidenden Gewinnung von Festgesteinen mit Rundschaftmeißeln unter Nutzung maschinellen Lernens – in Verbindung mit aus hochaufgelösten Schnittkraftmessungen abgeleiteten Kennwerten. Es wird auf linearen Schneidversuchen aufbauend gezeigt, dass Schichtgrenzen mit Genauigkeiten unter 3,7 cm identifiziert werden können. Ferner wird gezeigt, dass durch Risse geschwächte Gesteine gut identifiziert werden können und dass anisotropes Gesteinsverhalten möglicherweise problematisch auf den Klassifizierungserfolg wirkt. In einer Fallstudie wird gezeigt, dass die überwachten Algorithmen Künstliches Neurales Netz und Distributed Random Forest teils sehr gute Ergebnisse erzielen und unüberwachtes k-means-Clustering begrenzte Genauigkeiten für komplexe Situationen liefert. Die Ergebnisse werden in einer Web-App visualisiert. Aus den Ergebnissen wird abgeleitet, dass ein mögliches Sensorsystem mit den vorgeschlagenen Auswerteroutinen gute Ergebnisse erzielen kann, die gleichzeitig robust gegen Änderungen der Schneidparameter sind.:1 Introduction...1 2 Cutting Excavation with Conical Picks...5 2.1 Cutting Process...8 2.1.2 Cutting Parameters...11 2.1.3 Influences of Rock Mechanical Properties...17 2.1.4 Influences of the Rock Mass...23 2.2 Ratios of Cutting Force Components...24 3 State of the Art...29 3.1 Data Analysis in Rock Cutting Research...29 3.2 Rock Classification Systems...32 3.2.1 MWC – Measure-While-Cutting...32 3.2.2 MWD – Measuring-While-Drilling...34 3.2.3 Automated Profiling During Cutting...35 3.2.4 Wear Monitoring...36 3.3 Machine learning for Rock Classification...36 4 Problem Statement and Justification of Topic...38 5 Material and Methods...40 5.1 Rock Cutting Equipment...40 5.2 Software & PC...42 5.3 Samples and Rock Cutting Parameters...43 5.3.1 Sample Sites...43 5.3.2 Experiment CO – Zoned Concrete...45 5.3.3 Experiment GN – Anisotropic Rock Gneiss...47 5.3.4 Experiment GR – Uncracked and Cracked Granite...49 5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores...50 5.4 Data Processing...53 5.5 Force Component Ratio Calculation...54 5.6 Procedural Selection of Features...57 5.7 Image-Based Referencing and Rock Boundary Modelling...60 5.8 Block Modelling and Gridding...61 5.9 Correlation Analysis...63 5.10 Regression Analysis of Effect...64 5.11 Machine Learning...65 5.11.2 K-Means Algorithm...66 5.11.3 Artificial Neural Networks...67 5.11.4 Distributed Random Forest...70 5.11.5 Classification Success...72 5.11.6 Boundary Layer Recognition Precision...73 5.12 Machine Learning Case Study...74 6 Results...75 6.1 CO – Zoned Concrete...75 6.1.1 Descriptive Statistics...75 6.1.2 Procedural Evaluation...76 6.1.3 Correlation of the Covariates...78 6.1.4 K-Means Cluster Analysis...79 6.2 GN – Foliated Gneiss...85 6.2.1 Cutting Forces...86 6.2.2 Regression Analysis of Effect...88 6.2.3 Details Irregular Behaviour...90 6.2.4 Interpretation of Anisotropic Behaviour...92 6.2.5 Force Component Ratios...92 6.2.6 Summary and Interpretations of Results...93 6.3 CR – Cracked Granite...94 6.3.1 Force Component Results...94 6.3.2 Spatial Analysis...97 6.3.3 Error Analysis...99 6.3.4 Summary...100 6.4 Case Study...100 6.4.1 Feature Distribution in Block Models...101 6.4.2 Distributed Random Forest...105 6.4.3 Artificial Neural Network...107 6.4.4 K-Means...110 6.4.5 Training Data Required...112 7 Discussion...114 7.1 Critical Discussion of Experimental Results...114 7.1.1 Experiment CO...114 7.1.2 Experiment GN...115 7.1.3 Experiment GR...116 7.1.4 Case Study...116 7.1.5 Additional Outcomes...117 7.2 Comparison of Machine Learning Algorithms...118 7.2.1 K-Means...118 7.2.2 Artificial Neural Networks and Distributed Random Forest...119 7.2.3 Summary...120 7.3 Considerations Towards Sensor System...121 7.3.1 Force Vectors and Data Acquisition Rate...121 7.3.2 Sensor Types...122 7.3.3 Computation Speed...123 8 Summary and Outlook...125 References...128 Annex A Fields of Application of Conical Tools...145 Annex B Supplements Cutting and Rock Parameters...149 Annex C Details Topic-Analysis Rock Cutting Publications...155 Annex D Details Patent Analysis...157 Annex E Details Rock Cutting Unit HSX-1000-50...161 Annex F Details Used Pick...162 Annex G Error Analysis Cutting Experiments...163 Annex H Details Photographic Modelling...166 Annex I Laser Offset...168 Annex J Supplements Experiment CO...169 Annex K Supplements Experiment GN...187 Annex L Supplements Experiment GR...191 Annex M Preliminary Artificial Neural Network Training...195 Annex N Supplements Case Study (CD)...201 Annex O R-Codes (CD)...203 Annex P Supplements Rock Mechanical Tests (CD)...204

Page generated in 0.0522 seconds