Spelling suggestions: "subject:"field equations"" "subject:"yield equations""
41 |
Integration schemes for Einstein equationsNdzinisa, Dumsani Raymond 29 July 2013 (has links)
M.Sc. (Applied Mathematics) / Explicit schemes for integrating ODEs and time–dependent partial differential equations (in the method of lines–MoL–approach) are very well–known to be stable as long as the maximum sizes of their timesteps remain below a certain minimum value of the spatial grid spacing. This is the Courant– Friedrich’s–Lewy (CFL) condition. These schemes are the ones traditionally being used for performing simulations in Numerical Relativity (NR). However, due to the above restriction on the timestep, these schemes tend to be so much inadequate for simulating some of the highly probable and astrophysically interesting phenomenae. So, it is of interest this currernt moment to seek or find integrating schemes that may help numerical relativists to somehow circumvent the CFL restriction inherent in the use of explicit schemes. In this quest, a more natural starting point appears to be implicit schemes. These schemes possess a highly desireable stability property – they are unconditionally stable. There also exists a combination of implicit and explicit (IMEX) schemes. Some researchers have already started exploring (since 2009, 2011) these for NR purposes. We report on the implementation of two implicit schemes (implicit Euler, and implicit midpoint rule) for Einstein’s evolution equations. For low computational costs, we concentrated on spherical symmetry. The integration schemes were successfully implemented and showed satisfactory second order convergence patterns on the systems considered. In particular, the Implicit Midpoint Rule proved to be a little superior to the implicit Euler scheme.
|
42 |
Adiabatic and entropy perturbations in cosmologyGordon, Christopher January 2001 (has links)
No description available.
|
43 |
Cosmic strings and scalar tensor gravityDa Silva, Caroline Dos Santos January 1999 (has links)
This thesis is concerned with the study of cosmic strings. We studied the values for the Higgs mass and string coupling for which the gravitational effect of an infinite cosmic string in the context of the Einstein theory is not only locally but also globally weak. We conclude this happens for strings formed at scales less or equal to the Planck one with Higgs mass being less or equal to the boson vectorial mass. Then we examined the metric of an isolated self-gravitating abelian-Higgs vortex in dilatonic gravity for arbitrary coupling of the vortex fields to the dilaton. We looked for solutions in both massless and massive dilaton gravity. We compared our results to existing metrics for strings in Einstein and .Jordan-Brans-Dicke theories. We explored the generalisation of Bogomolnyi arguments for our vortices and commented on the effects on test particles. We then included the presence of an axion field and examined the metric of an isolated self-gravitating axionic-dilatonic string. Finally we studied dilatonic strings through black hole solutions in string theory. We concluded that the horizon of non-extreme charged black holes supports the long-range fields of the Nielsen-Olesen string that can be considered as black hole hair and whose gravitational effect is in general the production of a conical deficit into the metric of the black hole background. We also concluded that the effect of the dilaton on the horizon of these black holes is to generate an additional charge.
|
44 |
Helikální symetrie a neexistence asymptoticky plochých periodických řešení v obecné teorii relativity / Helical symmetry and the non-existence of asymptotically flat periodic solutions in general relativityScholtz, Martin January 2011 (has links)
1 Title Helical symmetry and the non-existence of asymptotically flat periodic solutions in general relativity Author Martin Scholtz Department Institute of theoretical physics Faculty of Mathematics and Physics Charles University in Prague Supervisor Prof. RNDr. Jiří Bičák, DrSc., dr. h.c. Abstract. No exact helically symmetric solution in general relativity is known today. There are reasons, however, to expect that such solutions, if they exist, cannot be asymptotically flat. In the thesis presented we investigate a more general question whether there exist periodic asymptotically flat solutions of Einstein's equations. We follow the work of Gibbons and Stewart [3] who have shown that there are no periodic vacuum asymptotically flat solutions an- alytic near null infinity I. We discuss necessary corrections of Gibbons and Stewart proof and generalize their results for the system of Einstein-Maxwell, Einstein-Klein-Gordon and Einstein-conformal-scalar field equations. Thus, we show that there are no asymptotically flat periodic space-times analytic near I if as the source of gravity we take electromagnetic, Klein-Gordon or conformally invariant scalar field. The auxilliary results consist of corresponding confor- mal field equations, the Bondi mass and the Bondi massloss formula for scalar fields. We also...
|
45 |
Tratamento das equações de Eintein-Yang-Mills para soluções numericas com simetria esferica auto-gravitante e simetria axial no espaço-tempo de Minkowski / Set up of Einstein-Yang-Mills equation for numerical solutions of self-gravitating spherical symmetric fields and axial simmetric fields on Minkowski space-timeD'Afonseca, Luis Alberto 28 August 2007 (has links)
Orientador: Samuel Rocha de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T22:23:20Z (GMT). No. of bitstreams: 1
D'Afonseca_LuisAlberto_D.pdf: 4257675 bytes, checksum: 54debc66eff41b6c8b450adbcfc3bab6 (MD5)
Previous issue date: 2007 / Resumo: Nesse trabalho delineamos a teoria clássica para o campo de Einstein-Yang-Mills e elaboramos um conjunto particular de equações para obtermos soluções numéricas. Estudamos dois casos com simetria espaço-temporal: Simetria esférica com campo auto-gravitante e simetria axial no espaço-tempo de Minkowski. Utilizamos métodos numéricos das linhas para fazer a evolução temporal dos campos discretizados. No caso com simetria esférica, os campos são discretizados por diferenças finitas e no caso da simetria axial comparamos as discretizações por métodos Pseudo-Espectrais e por diferenças finitas. Para evolução temporal um método auto-adaptativo de Runge-Kutta é empregado. Na simulação dos campos de Yang-Mills auto-gravitantes com simetria esférica mostramos a evolução da implosão e explosão de uma casca energética sem formação de buraco negro nem de corpo estável. No caso com simetria axial além da implosão e explosão de pulsos de cores diferentes dos campos de Yang-Mills, geramos também várias soluções dinâmicas em que vemos o transiente do intercâmbio de energia entre essas cores / Abstract: In this work we outline the classic theory of Einstein-Yang-Mills fields and work out a set of particular equations suited for numerical simulations. We consider two special cases with space-time symmetries: self-gravitating spherical symmetric and axially symmetric field on a Minkowski space-time. We use the numerical method of lines for time evolution of discretized fields. On the spherical symmetric case, the fields are discretized by finite differences and on the axial symmetric case we compare the field discretization by the pseudo-spectral method and finite differences method. For time stepping we use a self-adaptive Runge-Kutta method. In the simulation of Yang-Mills self-gravitating fields with spherical symmetry we show the evolution of implosion and explosion of a energetic shell without black hole or stable body formation. In the axial symmetric case besides implosion and explosion of pulses of different colours of Yang-Mills fields, we also generate several dynamic solutions that display the transient of the energy exchange among these colours / Doutorado / Fisica-Matematica / Doutor em Matemática Aplicada
|
46 |
Asymptotic staticity and tensor decompositions with fast decay conditionsAvila, Gastón January 2011 (has links)
Corvino, Corvino and Schoen, Chruściel and Delay have shown the existence of a large class of asymptotically flat vacuum initial data for Einstein's field equations which are static or stationary in a neighborhood of space-like infinity, yet quite general in the interior. The proof relies on some abstract, non-constructive arguments which makes it difficult to calculate such data numerically by using similar arguments.
A quasilinear elliptic system of equations is presented of which we expect that it can be used to construct vacuum initial data which are asymptotically flat, time-reflection symmetric, and asymptotic to static data up to a prescribed order at space-like infinity. A perturbation argument is used to show the existence of solutions. It is valid when the order at which the solutions approach staticity is restricted to a certain range.
Difficulties appear when trying to improve this result to show the existence of solutions that are asymptotically static at higher order. The problems arise from the lack of surjectivity of a certain operator.
Some tensor decompositions in asymptotically flat manifolds exhibit some of the difficulties encountered above. The Helmholtz decomposition, which plays a role in the preparation of initial data for the Maxwell equations, is discussed as a model problem. A method to circumvent the difficulties that arise when fast decay rates are required is discussed. This is done in a way that opens the possibility to perform numerical computations.
The insights from the analysis of the Helmholtz decomposition are applied to the York decomposition, which is related to that part of the quasilinear system which gives rise to the difficulties. For this decomposition analogous results are obtained. It turns out, however, that in this case the presence of symmetries of the underlying metric leads to certain complications. The question, whether the results obtained so far can be used again to show by a perturbation argument the existence of vacuum initial data which approach static solutions at infinity at any given order, thus remains open. The answer requires further analysis and perhaps new methods. / Corvino, Corvino und Schoen als auch Chruściel und Delay haben die Existenz einer grossen Klasse asymptotisch flacher Anfangsdaten für Einsteins Vakuumfeldgleichungen gezeigt, die in einer Umgebung des raumartig Unendlichen statisch oder stationär aber im Inneren der Anfangshyperfläche sehr allgemein sind. Der Beweis beruht zum Teil auf abstrakten, nicht konstruktiven Argumenten, die Schwierigkeiten bereiten, wenn derartige Daten numerisch berechnet werden sollen.
In der Arbeit wird ein quasilineares elliptisches Gleichungssystem vorgestellt, von dem wir annehmen, dass es geeignet ist, asymptotisch flache Vakuumanfangsdaten zu berechnen, die zeitreflektionssymmetrisch sind und im raumartig Unendlichen in einer vorgeschriebenen Ordnung asymptotisch zu statischen Daten sind. Mit einem Störungsargument wird ein Existenzsatz bewiesen, der gilt, solange die Ordnung, in welcher die Lösungen asymptotisch statische Lösungen approximieren, in einem gewissen eingeschränkten Bereich liegt.
Versucht man, den Gültigkeitsbereich des Satzes zu erweitern, treten Schwierigkeiten auf. Diese hängen damit zusammen, dass ein gewisser Operator nicht mehr surjektiv ist.
In einigen Tensorzerlegungen auf asymptotisch flachen Räumen treten ähnliche Probleme auf, wie die oben erwähnten. Die Helmholtzzerlegung, die bei der Bereitstellung von Anfangsdaten für die Maxwellgleichungen eine Rolle spielt, wird als ein Modellfall diskutiert. Es wird eine Methode angegeben, die es erlaubt, die Schwierigkeiten zu umgehen, die auftreten, wenn ein schnelles Abfallverhalten des gesuchten Vektorfeldes im raumartig Unendlichen gefordert wird. Diese Methode gestattet es, solche Felder auch numerisch zu berechnen. Die Einsichten aus der Analyse der Helmholtzzerlegung werden dann auf die Yorkzerlegung angewandt, die in den Teil des quasilinearen Systems eingeht, der Anlass zu den genannten Schwierigkeiten gibt. Für diese Zerlegung ergeben sich analoge Resultate. Es treten allerdings Schwierigkeiten auf, wenn die zu Grunde liegende Metrik Symmetrien aufweist. Die Frage, ob die Ergebnisse, die soweit erhalten wurden, in einem Störungsargument verwendet werden können um die Existenz von Vakuumdaten zu zeigen, die im räumlich Unendlichen in jeder Ordnung statische Daten approximieren, bleibt daher offen. Die Antwort erfordert eine weitergehende Untersuchung und möglicherweise auch neue Methoden.
|
47 |
Teoria da gravitação num espaço-tempo de Weyl não-integrávelLima, Ruydeiglan Gomes 25 February 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-12T13:25:21Z
No. of bitstreams: 1
arquivototal.pdf: 1212419 bytes, checksum: 6d3ca7625ab07b583f3f68045187a552 (MD5) / Made available in DSpace on 2017-09-12T13:25:21Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1212419 bytes, checksum: 6d3ca7625ab07b583f3f68045187a552 (MD5)
Previous issue date: 2016-02-25 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In 1918 the German Hermann Weyl developed a unified theory of gravitation and electromagnetism becoming geometrical both interactions, that is, he associated the potential electromagnetic a 1-form a, after considering that the length of a vector is not preserved under parallel transport as well as with the direction, this also meant that the covariant derivatives
of the metric tensor ceased to be null becoming Vag" = a, The gravitational and
electromagnetic field equations are obtained from the action I = f (R2 ± v Ft" ) —gd4x
in a gauge any and "natural gauge"R = A = constant taking into account that they, as well as the action, should be both invariant under coordinate transformations as invariant under the gauge transformations introduced, namely, gliv = of gin, and di, = cp.+ hi, actually, the first person to speak in scale invariance in physics was the Weyl himself in his article. It is also found that the solutions to the emptiness of Einstein's field equations are also solutions of the corresponding Weyl's field equations. Finally it is shown that the Weyl affine geodesic may not come from a variational principle by analysing the Helmholtz conditions for the inverse problem of the calculus of variations and discusses about Einstein's criticism of the theory, on which it is concluded that the even seized an inadequate definition of proper time to give his opinion on the work of Weyl, thus, a problem to be solved was to find a good definition of proper time, which leaves open a final version of the Weyl theory. / Em 1918 o alem-do Hermann Weyl desenvolveu sua teoria de unificndo entre gravitacao e eletromagnetismo geometrizando ambas as internOes, isto é, ele associou o potencial eletromagnetico a uma 1-forma a, depois de ter considerado que o comprimento de um vetor nao preserva-se sob transporte paralelo assim como acontece com a direcao, isso tambem fez com que a derivada covariante do tensor metrico deixasse de ser nula tornandose V agii, = glivaa. As equagOes de campo gravitacionais e eletromagneticas sdo obtidas da nao I = f (R2 ±AF,,,,Filv)\/—gd4x em um calibre qualquer e no "calibre natural" R = A = const ante levando em conta que elas, assim como a nao, devem ser tanto invariantes por transformnOes de coordenadas como invariantes sob as transformnOes de calibre introduzidas, a saber, gliv = of gin, e di, = al, + hi, na verdade, a primeira pessoa a falar em invarifincia de escala na fisica foi o prOprio Weyl em seu artigo. Tambem é verificado que as solucOes para o vazio das equagOes de campo de Einstein tambem sac) solucOes das equnOes de campo de Weyl correspondentes. Por fim mostra-se que as geodesicas afins de Weyl nao podem advir de um princfpio variacional atraves da analise das condicOes de Helmholtz para o problema inverso do calculo de varinOes e discute-se sobre a critica de Einstein a teoria, onde conclui-se que o mesmo se apoderou de uma definicao inadequada de tempo proprio para dar seu parecer sobre o trabalho de Weyl, assim, um problema a ser resolvido seria encontrar uma boa definicao de tempo pr6prio, o que deixa em aberto uma versdo final da teoria de Weyl.
|
48 |
Mathematical modeling in neuroscience : collective behavior of neuronal networks & the role of local homeoproteins diffusion in morphogenesis / Modélisation mathématique en neuroscience : comportement collectif des réseaux neuronaux & rôle de la diffusion locale des homéoprotéines dans la morphogenèseQuininao, Cristobal 02 June 2015 (has links)
Ce travail est consacré à l’étude de quelques questions issues de la modélisation des systèmes biologiques en combinant des outils analytiques et probabilistes. Dans la première partie, nous nous intéressons à la dérivation des équations de champ moyen associées aux réseaux de neurones, ainsi qu’à l’étude de la convergence vers l’équilibre des solutions. Dans le Chapitre 2, nous utilisons la méthode de couplage pour démontrer la propagation du chaos pour un réseau neuronal avec délais et avec une architecture aléatoire. Dans le Chapitre 3, nous considérons une équation cinétique du type FitzHugh-Nagumo. Nous analysons l'existence de solutions et prouvons la convergence exponentielle dans les régimes de faible connectivité. Dans la deuxième partie, nous étudions le rôle des homéoprotéines (HPs) sur la robustesse des bords des aires fonctionnelles. Dans le Chapitre 4, nous proposons un modèle général du développement neuronal. Nous prouvons qu'en l'absence de diffusion, les HPs sont exprimées dans des régions irrégulières. Mais en présence de diffusion, même arbitrairement faible, des frontières bien définies émergent. Dans le Chapitre 5, nous considérons le modèle général dans le cas unidimensionnel et prouvons l'existence de solutions stationnaires monotones définissant un point d'intersection unique aussi faible que soit le coefficient de diffusion. Enfin, dans la troisième partie, nous étudions une équation de Keller-Segel sous-critique. Nous démontrons la propagation du chaos sans aucune restriction sur le noyau de force. En outre, nous démontrons que la propagation du chaos a lieu dans le sens de l’entropie. / This work is devoted to the study of mathematical questions arising from the modeling of biological systems combining analytic and probabilistic tools. In the first part, we are interested in the derivation of the mean-field equations related to some neuronal networks, and in the study of the convergence to the equilibria of the solutions to the limit equations. In Chapter 2, we use the coupling method to prove the chaos propagation for a neuronal network with delays and random architecture. In Chapter 3, we consider a kinetic FitzHugh-Nagumo equation. We analyze the existence of solutions and prove the nonlinear exponential convergence in the weak connectivity regime. In the second part, we study the role of homeoproteins (HPs) on the robustness of boundaries of functional areas. In Chapter 4, we propose a general model for neuronal development. We prove that in the absence of diffusion, the HPs are expressed on irregular areas. But in presence of diffusion, even arbitrarily small, well defined boundaries emerge. In Chapter 5, we consider the general model in the one dimensional case and prove the existence of monotonic stationary solutions defining a unique intersection point for any arbitrarily small diffusion coefficient. Finally, in the third part, we study a subcritical Keller-Segel equation. We show the chaos propagation without any restriction on the force kernel. Eventually, we demonstrate that the propagation of chaos holds in the entropic sense.
|
49 |
Gravitation in Lorentz and Euclidean GeometryWilhelmson, Niki, Stoyanov, Johan January 2022 (has links)
The aim of this work is to derive mathematical descriptions of gravitation. Postulating gravitation as a force field, Newton's law of gravitation is heuristically derived by considering linear differential operators invariant under euclidean isometries and by finding the fundamental solution to Helmholtz equation in three dimensions. Thereafter, the theory of differential geometry is introduced, providing a framework for the subsequent review of gravitation as curvature. Lastly, in the light of Einstein's postulates and equivalence principle, Lovelock's proof of uniqueness of Einstein's field equations is presented.
|
50 |
Generalized EMP and Nonlinear Schrodinger-type Reformulations of Some Scaler Field Cosmological ModelsD'Ambroise, Jennie 01 May 2010 (has links)
We show that Einstein’s gravitational field equations for the Friedmann- Robertson-Lemaître-Walker (FRLW) and for two conformal versions of the Bianchi I and Bianchi V perfect fluid scalar field cosmological models, can be equivalently reformulated in terms of a single equation of either generalized Ermakov-Milne- Pinney (EMP) or (non)linear Schrödinger (NLS) type. This work generalizes or presents an alternative to similar reformulations published by the authors who inspired this thesis: R. Hawkins, J. Lidsey, T. Christodoulakis, T. Grammenos, C. Helias, P. Kevrekidis, G. Papadopoulos and F.Williams. In particular we cast much of these authors’ works into a single framework via straightforward derivations of the EMP and NLS equations from a simple linear combination of the relevant Einstein equations. By rewriting the resulting expression in terms of the volume expansion factor and performing a change of variables, we obtain an uncoupled EMP or NLS equation that is independent of the imposition of additional conservation equations. Since the correspondences shown here present an alternative route for obtaining exact solutions to Einstein’s equations, we reconstruct many known exact solutions via their EMP or NLS counterparts and show by numerical analysis the stability properties of many solutions.
|
Page generated in 0.1101 seconds