• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1694
  • 530
  • 312
  • 259
  • 181
  • 132
  • 116
  • 95
  • 43
  • 20
  • 16
  • 13
  • 12
  • 10
  • 8
  • Tagged with
  • 4000
  • 1139
  • 655
  • 347
  • 346
  • 345
  • 306
  • 304
  • 294
  • 290
  • 286
  • 264
  • 257
  • 244
  • 241
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Diagnosis of a Truck Engine using Nolinear Filtering Techniques

Nilsson, Fredrik January 2007 (has links)
<p>Scania CV AB is a large manufacturer of heavy duty trucks that, with an increasingly stricter emission legislation, have a rising demand for an effective On Board Diagnosis (OBD) system. One idea for improving the OBD system is to employ a model for the construction of an observer based diagnosis system. The proposal in this report is, because of a nonlinear model, to use a nonlinear filtering method for improving the needed state estimates. Two nonlinear filters are tested, the Particle Filter (PF) and the Extended Kalman Filter (EKF). The primary objective is to evaluate the use of the PF for Fault Detection and Isolation (FDI), and to compare the result against the use of the EKF.</p><p>With the information provided by the PF and the EKF, two residual based diagnosis systems and two likelihood based diagnosis systems are created. The results with the PF and the EKF are evaluated for both types of systems using real measurement data. It is shown that the four systems give approximately equal results for FDI with the exception that using the PF is more computational demanding than using the EKF. There are however some indications that the PF, due to the nonlinearities, could offer more if enough CPU time is available.</p>
462

An Investigation for the need of Secondary Treatment of Residential Wastewater when Applied with a Subsurface Drip Irrigation System

Hillenbrand, Boone S 01 August 2010 (has links)
The objective of this study was to investigate the need for domestic wastewater to receive secondary treatment when being applied to the soil by subsurface drip irrigation (SDI). SDI uniformly distributes wastewater into the soil, which optimizes the soil’s chemical, physical, and biological capacity to remove waste constituents. Because of these advantages, many regulatory jurisdictions are allowing SDI at sites that previously were prohibited from using conventional trench-based soil application systems because of shallow soil restrictions. However, most of these regulatory agencies also require that the wastewater receives secondary treatment (dissolved organic carbon reduction) before the SDI system. At issue is whether the enhanced soil-based renovation provided by SDI should eliminate the necessity for secondary treatment before SDI. Two SDI systems were installed and monitored at two sites in Tennessee. These locations were residential developments served by a septic tank effluent pump (STEP) collection system, a recirculating media filter (fine gravel media), and SDI dispersal. At both locations, SDI plots were established to receive primary treated (septic tank effluent) and secondary treated (recirculating media filter effluent) wastewater. In close proximity to randomly selected SDI emitters, soil samples were extracted. Soil cores were analyzed to determine saturated hydraulic conductivity (Ksat), and pore water samples were analyzed for nitrate, total nitrogen, total carbon, and total phosphorus. Results indicate that the primary-treated sites had lower Ksat values, higher nitrate and higher total nitrogen levels than the secondary-treated side and the background soil. Interestingly, the primary treated side had less total carbon and the background phosphorus concentration was twice that of the primary and secondary treated sides. Primary effluent showed a decrease in concentration for all constituents with increased depth. Secondary treatment does result in a higher quality effluent but is not needed when applying effluent with a SDIS.
463

Automatic tuning of continuous-time filters

Sumesaglam, Taner 15 November 2004 (has links)
Integrated high-Q continuous-time filters require adaptive tuning circuits that will correct the filter parameters such as center frequency and quality factor (Q). Three different automatic tuning techniques are introduced. In all of the proposed methods, frequencyand quality factor tuning loops are controlled digitally, providing stable tuning by activating only one loop at a given time. In addition, a direct relationship between passband gain and quality factor is not required, so the techniques can be applied to active LC filters as well as Gm-C filters. The digital-tuning method based on phase comparison was verified with 1% tuning accuracy at 5.5 MHz for Q of 20. It uses phase information for both Q and center-frequency tuning. The filter output phase is tuned to the known references, which are generated by a frequency synthesizer. The core tuning circuit consists of D flip-flops (DFF) and simple logic gates. DFFs are utilized to perform binary phase comparisons. The second method, high-order digital tuning based on phase comparison, is an extension of the previous technique to high-order analog filters without depending on the master-slave approach. Direct tuning of the overall filter response is achieved without separating individual biquad sections, eliminating switches and their parasitics. The tuning system was verified with a prototype 6th order bandpass filter at 19 MHz with 0.6 MHz bandwidth, which was fabricated in a conventional 0.5 [mu]m CMOS technology. Analysis of different practical limitations is also provided. Finally, the digital-tuning method based on magnitude comparison is proposed for second-order filters for higher frequency operations. It incorporates a frequency synthesizer to generate reference signals, an envelope detector and a switched comparator to compare output magnitudes at three reference frequencies. The theoretical analysis of the technique and the simulation results are provided.
464

Applications of Cost Function-Based Particle Filters for Maneuvering Target Tracking

Wang, Sung-chieh 23 August 2007 (has links)
For the environment of target tracking with highly non-linear models and non-Gaussian noise, the tracking performance of the particle filter is better than extended Kalman filter; in addition, the design of particle filter is simpler, so it is quite suitable for the realistic environment. However, particle filter depends on the probability model of the noise. If the knowledge of the noise is incorrect, the tracking performance of the particle filter will degrade severely. To tackle the problem, cost function-based particle filters have been studied. Though suffering from minor degradation on the performance, the cost function-based particle filters do not need probability assumptions of the noises. The application of cost function-based particle filters will be more robust in any realistic environment. Cost function-based particle filters will enable maneuvering multiple target tracking to be suitable for any environment because it does not depend on the noise model. The difficulty lies in the link between the estimator and data association. The likelihood function are generally obtained from the algorithm of the data association; while cost functions are used in the cost function-based particle filter for moving the particles and update the corresponding weights without probability assumptions on the noises. The thesis is focused on the combination of data association and cost function-based particle filter, in order to make the algorithm of multiple target tracking more robust in noisy environments.
465

Reconfigurable Microstrip Bandpass Filters, Phase Shifters Using Piezoelectric Transducers, and Beam-scanning Leaky-wave Antennas

Kim, Chan Ho 2012 May 1900 (has links)
In modern wireless communication and radar systems, filters play an important role in getting a high-quality signal while rejecting spurious and neighboring unwanted signals. The filters with reconfigurable features, such as tunable bandwidths or switchable dual bands, also play a key part both in realizing the compact size of the system and in supporting multi-communication services. The Chapters II-IV of this dissertation show the studies of the filters for microwave communication. Bandpass filters realized in ring resonators with stepped impedance stubs are introduced. The effective locations of resonant frequencies and transmission zeros are analyzed, and harmonic suppression by interdigital-coupled feed lines is discussed. To vary mid-upper and mid-lower passband bandwidths separately, the characteristic impedances of the open-circuited stubs are changed. Simultaneous change of each width of the open-circuited stub results in variable passband bandwidths. Asymmetric stepped-impedance resonators are also used to develop independently controllable dual-band (2.4 and 5.2 GHz) bandpass filters. By extending feed lines, a transmission zero is created, which results in the suppression of the second resonance of 2.4-GHz resonators. To determine the precise transmission zeros, an external quality factor at feeders is fixed while extracting coupling coefficients between the resonators. Two kinds of feed lines, such as hook-type and spiral-type, are developed, and PIN diodes are controlled to achieve four states of switchable dual-band filters. Beam-scanning features of the antennas are very important in the radar systems. Phase shifters using piezoelectric transducers and dielectric leaky-wave antennas using metal strips are studied in the Chapters V-VII of this dissertation. Meandered microstrip lines are used to reduce the size of the phase shifters working up to 10 GHz, and reflection-type phase shifters using piezoelectric transducers are developed. A dielectric film with metal strips fed by an image line with a high dielectric constant is developed to obtain wide and symmetrical beam-steering angle. In short, many techniques are presented for realizing reconfigurable filters and large beam-scan features in this dissertation. The result of this work should have many applications in various wireless communication and radar systems.
466

Autonomous Navigation Using Global Positioning System

Srivardhan, D 10 1900 (has links) (PDF)
No description available.
467

Packet CDMA communication without preamble

Rahaman, Md. Sajjad 02 January 2007
Code-Division Multiple-Access (CDMA) is one of the leading digital wireless communication methods currently employed throughout the world. Third generation (3G) and future wireless CDMA systems are required to provide services to a large number of users where each user sends data burst only occasionally. The preferred approach is packet based CDMA so that many users share the same physical channel simultaneously. In CDMA, each user is assigned a pseudo-random (PN) code sequence. PN codephase synchronization between received signals and a locally generated replica by the receiver is one of the fundamental requirements for successful implementation of any CDMA technique. The customary approach is to start each CDMA packet with a synchronization preamble which consists of PN code without data modulation. Packets with preambles impose overheads for communications in CDMA systems especially for short packets such as mouse-clicks or ATM packets of a few hundred bits. Thus, it becomes desirable to perform PN codephase synchronization using the information-bearing signal without a preamble. This work uses a segmented matched filter (SMF) which is capable of acquiring PN codephase in the presence of data modulation. Hence the preamble can be eliminated, reducing the system overhead. Filter segmentation is also shown to increase the tolerance to Doppler shift and local carrier frequency offset. <p>Computer simulations in MATLAB® were carried out to determine various performance measures of the acquisition system. Substantial improvement in probability of correct codephase detection in the presence of multiple-access interference and data modulation is obtained by accumulating matched filter samples over several code cycles prior to making the codephase decision. Correct detection probabilities exceeding 99% are indicated from simulations with 25 co-users and 10 kHz carrier frequency offset or Doppler shift by accumulating five or more PN code cycles, using maximum selection detection criterion. Analysis and simulation also shows that cyclic accumulation can improve packet throughput by 50% and by as much as 100% under conditions of high offered traffic and Doppler shift for both fixed capacity and infinite capacity systems.
468

Developments of thick-metal inductors and applications to reactive lumped-element low-pass filter circuits

Gono Santosa, Edwin G 25 November 2009
Strong demands for smaller, cheaper, and multifunction wireless systems have put very stringent requirements on passive devices, such as inductors and capacitors. This is especially true considering the size and weight of most radio frequency (RF) transceivers are mainly due to passives. RF micro-electro-mechanical-systems (MEMS) passives are addressing this issue by offering lower power consumption and losses, higher linearity and quality (<i>Q</i>)-factors, potential for integration and miniaturization, and batch fabrication. These advantages position RF MEMS passives as good candidates to replace conventional passives. Further, they also open an opportunity for using the passives as building blocks for lumped element-based RF circuits (e.g. Flters, couplers, etc.) which could replace the more-bulky distributed-element circuits.<p> This thesis presents the design, simulation, fabrication using the deep X-ray lithography process, and testing of thick-metal RF inductors and their applications to lumped-element low-pass Filter (LPF) circuits. The 70-um tall single-turn loop inductors are structurally compatible to a pre-existing RF MEMS capacitor concept and allow the two device types to be fabricated together. This compatibility issue is crucial if they would be used to construct more complex RF circuits.<p> At a 50-Ohm inductive reactance point, test results show <i>Q</i>-factors of 17- 55, self-resonant frequencies (SRF) exceeding 11 GHz, and nominal inductances of 0.4- 3 nH for 1-loop inductors and <i>Q</i>-factors of 11- 42, SRFs of 4- 22 GHz, and inductances of 0.8- 5.5 nH for 2-loop inductors. Further, test results reveal that high conductivity metals improve the <i>Q</i>-factors, and that low dielectric-constant substrates increase the SRFs.<p> In terms of LPFs, measurements show that they demonstrate the expected third-order Chebyshev response. Two nickel Filters on a quartz glass substrate show a 0.6-dB ripple with 3-dB frequencies (<i>f</i>-3dB) of 6.1 GHz and 11.9 GHz respectively. On an alumina substrate, they exhibit a 1.4-dB ripple with <i>f</i>-3dB of 5.4 GHz and 10.6 GHz respectively. The filters are 203- 285 um tall and feature 6- 6.5 um wide capacitance air gaps. These dimensions are different than the original designs and the filter performances were shown to be somewhat sensitive to these discrepancies. Compared to a distributed approach, the lumped-element implementations led to an area reduction of up to 95%.
469

Camera Based Terrain Navigation / Kamerabaserad terrängnavigering

Rosander, Peter January 2009 (has links)
The standard way for both ground and aerial vehicles to navigate is to use anInertial Navigation System, INS, containing an Inertial Measurement Unit, IMU,measuring the acceleration and angular rate, and a GPS measuring the position.The IMU provides high dynamic measurements of the acceleration and the angularrate, which the INS integrates to velocity, position and attitude, respectively.While being completely impossible to jam, the dead-reckoned estimates will driftaway, i.e., the errors are unbounded. In conjunction with a GPS, providing lowdynamic updates with bounded errors, a highly dynamic system without any driftis attained. The weakness of this system is its integrity, since the GPS is easilyjammed with simple equipment and powered only by a small standard battery.When the GPS is jammed this system falls back into the behavior of the INS withunbounded errors. To counter this integrity problem a camera can be used aseither a back up to the GPS or as its replacement. The camera provides imageswhich are then matched versus a reference, e.g., a map or an aerial photo, to getsimilar estimates as the GPS would provide. The camera can of course also bejammed by blocking the view of the camera with smoke. Bad visibility can alsooccur due to bad weather, but a camera based navigation system will definitelybe more robust than one using GPS.This thesis presents two ways to fuse the measurements from the camera and theIMU, both of them utilizing the Harris corner detector to find point correspondencesbetween the camera image and an aerial photo. The systems are evaluatedby simulated data mimicking both a low and a high accuracy IMU and a camerataking snapshots of the aerial photo. Results show that for the simulated cameraimages the implemented corner detector works fine and that the overall result iscomparable to using a GPS. / Standardsättet för både flygande och markgående fordon att navigera är att användaett tröghetsnavigeringssystem, innehållande en IMU som mäter acceleration ochvinkelhastighet, tillsammans med GPS. IMU:n tillhandahåller högfrekventa mätningarav acceleration och vinkelhastighet som integreras till hastighet, positionoch attityd. Ett sådant system är omöjligt att störa, men lider av att de dödräknadestorheterna hastighet, position och attityd, med tiden, kommer att driva ivägifrån de sanna värdena. Tillsammans med GPS, som ger lågfrekventa mätningarav positionen, erhålls ett system med god dynamik och utan drift. Svagheten i ettvvisådant system är dess integritet, då GPS enkelt kan störas med enkel och billigutrustning. För att lösa integritetsproblemet kan en kamera användas, antingensom stöd eller som ersättare till GPS. Kameran tar bilder som matchas gentemoten referens ex. en karta eller ett ortofoto. Det ger liknande mätningar som de GPSger. Ett kamerabaserat system kan visserligen också störas genom att blockerasynfältet för kameran med exempelvis rök. Dålig sikt kan också uppkomma pågrund av dåligt väder eller dimma, men ett kamerabaserat system kommer definitivtatt vara robustare än ett som använder GPS.Det här examensarbetet presenterar två sätt att fusionera mätningar från etttröghetssystem och en kamera. Gemensamt för båda är att en hörndetektor, Harriscorner detector, används för att hitta korresponderande punkter mellan kamerabildernaoch ett ortofoto. Systemen utvärderas på simulerat data. Resultatenvisar att för simulerade data så fungerar den implementerade hörndetektorn ochatt prestanda i nivå med ett GPS-baserat system uppnås.
470

Analysis and Implementation of a Digital Filter for Wire Guidance

Tunströmer, Anders January 2011 (has links)
This master thesisinvestigates the possibilities to implement a digital filter for wire guidancein a truck. The analog circuits in the truck, today, are analyzed to understandtheir signal processing. The component MAX261 is especially interesting and itis analyzed in a special Section to make sure that all needed details, todevelop a digital filter, are available. When all theoretical calculation wasfinished, all the circuits were simulated to make sure that the calculationsare correct.   The digital filter is based onan analog filter which is expensive and not so easy to purchase. A requirementspecification was developed by analysis of the properties of the analog filterand how it is currently used. The analog filter is a part of a chain of analogsignal processing which mostly can be performed digitally instead.   The special type of the analogfilter makes the requirements, on the digital filter, very tough and anextensive analysis of digital filter structures was performed in order to finda suitable filter. The digital filter is of WDF (Wave Digital Filter)-type andit is very special, because it has two variable coefficients, one for thesteepness and one for the center frequency. The digital filter consists of anumber of first order filters, because a higher order filter with desiredproperties has coefficient values that are large which makes the stabilityproperties worse.   The best type ofimplementation of this filter and the signal processing are also analyzed.Finally, a prototype was developed on a development board where the maincomponent is a DSP (Digital Signal Processor). The program for the prototype iswritten in C-code and the performance of the system was verified by differenttests and measurements.

Page generated in 0.0524 seconds