• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 55
  • 21
  • 19
  • 15
  • 14
  • 13
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Finite Difference Schemes for Option Pricing under Stochastic Volatility and Lévy Processes: Numerical Analysis and Computing

El-Fakharany, Mohamed Mostafa Refaat 29 July 2015 (has links)
[EN] In the stock markets, the process of estimating a fair price for a stock, option or commodity is consider the corner stone for this trade. There are several attempts to obtain a suitable mathematical model in order to enhance the estimation process for evaluating the options for short or long periods. The Black-Scholes partial differential equation (PDE) and its analytical solution, 1973, are considered a breakthrough in the mathematical modeling for the stock markets. Because of the ideal assumptions of Black-Scholes several alternatives have been developed to adequate the models to the real markets. Two strategies have been done to capture these behaviors; the first modification is to add jumps into the asset following Lévy processes, leading to a partial integro-differential equation (PIDE); the second is to allow the volatility to evolve stochastically leading to a PDE with two spatial variables. Here in this work, we solve numerically PIDEs for a wide class of Lévy processes using finite difference schemes for European options and also, the associated linear complementarity problem (LCP) for American option. Moreover, the models for options under stochastic volatility incorporated with jump-diffusion are considered. Numerical analysis for the proposed schemes is studied since it is the efficient and practical way to guarantee the convergence and accuracy of numerical solutions. In fact, without numerical analysis, careless computations may waste good mathematical models. This thesis consists of four chapters; the first chapter is an introduction containing historically review for stochastic processes, Black-Scholes equation and preliminaries on numerical analysis. Chapter two is devoted to solve the PIDE for European option under CGMY process. The PIDE for this model is solved numerically using two distinct discretization approximations; the first approximation guarantees unconditionally consistency while the second approximation provides unconditional positivity and stability. In the first approximation, the differential part is approximated using the explicit scheme and the integral part is approximated using the trapezoidal rule. In the second approximation, the differential part is approximated using the Patankar-scheme and the integral part is approximated using the four-point open type formula. Chapter three provides a unified treatment for European and American options under a wide class of Lévy processes as CGMY, Meixner and Generalized Hyperbolic. First, the reaction and convection terms of the differential part of the PIDE are removed using appropriate mathematical transformation. The differential part for European case is explicitly discretized , while the integral part is approximated using Laguerre-Gauss quadrature formula. Numerical properties such as positivity, stability and consistency for this scheme are studied. For the American case, the differential part of the LCP is discretized using a three-time level approximation with the same integration technique. Next, the Projected successive over relaxation and multigrid techniques have been implemented to obtain the numerical solution. Several numerical examples are given including discussion of the errors and computational cost. Finally in Chapter four, the PIDE for European option under Bates model is considered. Bates model combines both stochastic volatility and jump diffusion approaches resulting in a PIDE with a mixed derivative term. Since the presence of cross derivative terms involves the existence of negative coefficient terms in the numerical scheme deteriorating the quality of the numerical solution, the mixed derivative is eliminated using suitable mathematical transformation. The new PIDE is solved numerically and the numerical analysis is provided. Moreover, the LCP for American option under Bates model is studied. / [ES] El proceso de estimación del precio de una acción, opción u otro derivado en los mercados de valores es objeto clave de estudio de las matemáticas financieras. Se pueden encontrar diversas técnicas para obtener un modelo matemático adecuado con el fin de mejorar el proceso de valoración de las opciones para periodos cortos o largos. Históricamente, la ecuación de Black-Scholes (1973) fue un gran avance en la elaboración de modelos matemáticos para los mercados de valores. Es un modelo práctico para estimar el valor razonable de una opción. Sobre unos supuestos determinados, F. Black y M. Scholes obtuvieron una ecuación diferencial parcial lineal y su solución analítica. Desde entonces se han desarrollado modelos más complejos para adecuarse a la realidad de los mercados. Un tipo son los modelos con volatilidad estocástica que vienen descritos por una ecuación en derivadas parciales con dos variables espaciales. Otro enfoque consiste en añadir saltos en el precio del subyacente por medio de modelos de Lévy lo que lleva a resolver una ecuación integro-diferencial parcial (EIDP). En esta memoria se aborda la resolución numérica de una amplia clase de modelos con procesos de Lévy. Se desarrollan esquemas en diferencias finitas para opciones europeas y también para opciones americanas con su problema de complementariedad lineal (PCL) asociado. Además se tratan modelos con volatilidad estocástica incorporando difusión con saltos. Se plantea el análisis numérico ya que es el camino eficiente y práctico para garantizar la convergencia y precisión de las soluciones numéricas. De hecho, la ausencia de análisis numérico debilita un buen modelo matemático. Esta memoria está organizada en cuatro capítulos. El primero es una introducción con un breve repaso de los procesos estocásticos, el modelo de Black-Scholes así como nociones preliminares de análisis numérico. En el segundo capítulo se trata la EIDP para las opciones europeas según el modelo CGMY. Se proponen dos esquemas en diferencias finitas; el primero garantiza consistencia incondicional de la solución mientras que el segundo proporciona estabilidad y positividad incondicionales. Con el primer enfoque, la parte diferencial se discretiza por medio de un esquema explícito y para la parte integral se usa la regla del trapecio. En la segunda aproximación, para la parte diferencial se usa un esquema tipo Patankar y la parte integral se aproxima por medio de la fórmula de tipo abierto con cuatro puntos. En el capítulo tercero se propone un tratamiento unificado para una amplia clase de modelos de opciones en procesos de Lévy como CGMY, Meixner e hiperbólico generalizado. Se eliminan los términos de reacción y convección por medio de un apropiado cambio de variables. Después la parte diferencial se aproxima por un esquema explícito mientras que para la parte integral se usa la fórmula de cuadratura de Laguerre-Gauss. Se analizan positividad, estabilidad y consistencia. Para las opciones americanas, la parte diferencial del LCP se discretiza con tres niveles temporales mediante cuadratura de Laguerre-Gauss para la integración numérica. Finalmente se implementan métodos iterativos de proyección y relajación sucesiva y la técnica de multimalla. Se muestran varios ejemplos incluyendo estudio de errores y coste computacional. El capítulo 4 está dedicado al modelo de Bates que combina los enfoques de volatilidad estocástica y de difusión con saltos derivando en una EIDP con un término con derivadas cruzadas. Ya que la discretización de una derivada cruzada comporta la existencia de coeficientes negativos en el esquema que deterioran la calidad de la solución numérica, se propone un cambio de variables que elimina dicha derivada cruzada. La EIDP transformada se resuelve numéricamente y se muestra el análisis numérico. Por otra parte se estudia el LCP para opciones americanas con el modelo de Bates. / [CA] El procés d'estimació del preu d'una acció, opció o un altre derivat en els mercats de valors és objecte clau d'estudi de les matemàtiques financeres . Es poden trobar diverses tècniques per a obtindre un model matemàtic adequat a fi de millorar el procés de valoració de les opcions per a períodes curts o llargs. Històricament, l'equació Black-Scholes (1973) va ser un gran avanç en l'elaboració de models matemàtics per als mercats de valors. És un model matemàtic pràctic per a estimar un valor raonable per a una opció. Sobre uns suposats F. Black i M. Scholes van obtindre una equació diferencial parcial lineal amb solució analítica. Des de llavors s'han desenrotllat models més complexos per a adequar-se a la realitat dels mercats. Un tipus és els models amb volatilitat estocástica que ve descrits per una equació en derivades parcials amb dos variables espacials. Un altre enfocament consistix a afegir bots en el preu del subjacent per mitjà de models de Lévy el que porta a resoldre una equació integre-diferencial parcial (EIDP) . En esta memòria s'aborda la resolució numèrica d'una àmplia classe de models baix processos de Lévy. Es desenrotllen esquemes en diferències finites per a opcions europees i també per a opcions americanes amb el seu problema de complementarietat lineal (PCL) associat. A més es tracten models amb volatilitat estocástica incorporant difusió amb bots. Es planteja l'anàlisi numèrica ja que és el camí eficient i pràctic per a garantir la convergència i precisió de les solucions numèriques. De fet, l'absència d'anàlisi numèrica debilita un bon model matemàtic. Esta memòria està organitzada en quatre capítols. El primer és una introducció amb un breu repàs dels processos estocásticos, el model de Black-Scholes així com nocions preliminars d'anàlisi numèrica. En el segon capítol es tracta l'EIDP per a les opcions europees segons el model CGMY. Es proposen dos esquemes en diferències finites; el primer garantix consistència incondicional de la solució mentres que el segon proporciona estabilitat i positivitat incondicionals. Amb el primer enfocament, la part diferencial es discretiza per mitjà d'un esquema explícit i per a la part integral s'empra la regla del trapezi. En la segona aproximació, per a la part diferencial s'usa l'esquema tipus Patankar i la part integral s'aproxima per mitjà de la fórmula de tipus obert amb quatre punts. En el capítol tercer es proposa un tractament unificat per a una àmplia classe de models d'opcions en processos de Lévy com ara CGMY, Meixner i hiperbòlic generalitzat. S'eliminen els termes de reacció i convecció per mitjà d'un apropiat canvi de variables. Després la part diferencial s'aproxima per un esquema explícit mentres que per a la part integral s'usa la fórmula de quadratura de Laguerre-Gauss. S'analitzen positivitat, estabilitat i consistència. Per a les opcions americanes, la part diferencial del LCP es discretiza amb tres nivells temporals amb quadratura de Laguerre-Gauss per a la integració numèrica. Finalment s'implementen mètodes iteratius de projecció i relaxació successiva i la tècnica de multimalla. Es mostren diversos exemples incloent estudi d'errors i cost computacional. El capítol 4 està dedicat al model de Bates que combina els enfocaments de volatilitat estocástica i de difusió amb bots derivant en una EIDP amb un terme amb derivades croades. Ja que la discretización d'una derivada croada comporta l'existència de coeficients negatius en l'esquema que deterioren la qualitat de la solució numèrica, es proposa un canvi de variables que elimina dita derivada croada. La EIDP transformada es resol numèricament i es mostra l'anàlisi numèrica. D'altra banda s'estudia el LCP per a opcions americanes en el model de Bates. / El-Fakharany, MMR. (2015). Finite Difference Schemes for Option Pricing under Stochastic Volatility and Lévy Processes: Numerical Analysis and Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53917
22

Finite Difference Methods for nonlinear American Option Pricing models: Numerical Analysis and Computing

Egorova, Vera 01 September 2016 (has links)
[EN] The present PhD thesis is focused on numerical analysis and computing of finite difference schemes for several relevant option pricing models that generalize the Black-Scholes model. A careful analysis of desirable properties for the numerical solutions of option pricing models as the positivity, stability and consistency, is provided. In order to handle the free boundary that arises in American option pricing problems, various transformation techniques based on front-fixing method are applied and studied. Special attention is paid to multi-asset option pricing, such as exchange or spread option. Appropriate transformation allows eliminating of the cross derivative term. Transformation techniques of partial differential equations to remove convection and reaction terms are studied in order to simplify the models and avoid possible troubles of stability. This thesis consists of six chapters. The first chapter is an introduction containing definitions of option and related terms and derivation of the Black-Scholes equation as well as general aspects of theory of finite difference schemes, including preliminaries on numerical analysis. Chapter 2 is devoted to solve linear Black-Scholes model for American put and call options. A Landau transformation and a new front-fixing transformation are applied to the free boundary value problem. It leads to non-linear partial differential equation (PDE) in a fixed domain. Stable and consistent explicit numerical schemes are proposed preserving positivity and monotonicity of the solution in accordance with the behaviour of the exact solution. Efficiency of the front-fixing method demonstrated in Chapter 2 has motivated us to apply the method to some more complicated nonlinear models. A new change of variables resulting in a time dependent boundary instead of fixed one, is applied to nonlinear Black-Scholes model for American options, such as Barles and Soner and Risk Adjusted Pricing models. Chapter 4 provides a new alternative approach for solving American option pricing problem based on rationality of investor. There exists an intensity function that can be reduced in the simplest case to penalty approach. Chapter 5 deals with multi-asset option pricing. Appropriate transformation allows eliminating of the cross derivative term avoiding computational drawbacks and possible troubles of stability. Concluding remarks are given in Chapter 6. All the considered models and numerical methods are accompanied by several examples and simulations. The convergence rate is computed confirming the theoretical study of consistency. Stability conditions are tested by numerical examples. Results are compared with known relevant methods in the literature showing efficiency of the proposed methods. / [ES] La presente tesis doctoral se centra en la construcción de esquemas en diferencias finitas y el análisis numérico de relevantes modelos de valoración de opciones que generalizan el modelo de Black-Scholes. Se proporciona un análisis cuidadoso de las propiedades de las soluciones numéricas tales como la positividad, la estabilidad y la consistencia. Con el fin de manejar la frontera libre que surge en los problemas de valoración de opciones Americanas, se aplican y se estudian diversas técnicas de transformación basadas en el método de fijación de las fronteras (front-fixing). Se presta especial atención a la valoración de opciones de múltiples activos, como son las opciones ''exchange'' y ''spread''. Esta tesis se compone de seis capítulos. El primer capítulo es una introducción que contiene las definiciones de opción y términos relacionados y la derivación de la ecuación de Black-Scholes, así como aspectos generales de la teoría de los esquemas en diferencias finitas, incluyendo preliminares de análisis numérico. El capítulo 2 está dedicado a resolver el modelo lineal de Black-Scholes para opciones Americanas put y call. Para fijar las fronteras del problema de frontera libre se aplican transformaciones como la de Landau y un nuevo cambio de variable propuesto. La eficiencia del método front-fixing mostrada en el capítulo 2 ha motivado el estudio de su aplicación a algunos modelos no lineales más complicados. En particular, se propone un cambio de variables que lleva a una nueva frontera dependiente del tiempo en lugar de una fija. Este cambio se aplica a modelos no lineales de Black-Scholes para opciones Americanas, como son el de Barles y Soner y el modelo RAPM (Risk Adjusted Pricing Methodology). El capítulo 4 ofrece una nueva técnica para la resolución de problemas de valoración de opciones Americanas basada en la racionalidad de los inversores. Aparece una función de la intensidad que se puede reducir en el caso más simple a la técnica de penalización (penalty method). Este enfoque tiene en cuenta el posible comportamiento irracional de los inversores. En la sección 4.2 se aplica esta técnica al modelo de cambio de regímenes lo que lleva a un nuevo modelo que tiene en cuenta el posible ejercicio irracional, así como varios estados del mercado. El enfoque del parámetro de racionalidad junto con una transformación logarítmica permiten construir un esquema numérico eficiente sin aplicar el método front-fixing o la conocida formulación de LCP (Linear Complementarity Problem). El capítulo 5 se dedica a la valoración de opciones de activos múltiples. Una transformación apropiada permite la eliminación del término de derivadas cruzadas evitando inconvenientes computacionales y posibles problemas de estabilidad. Las conclusiones se muestran en el capítulo 6. Se pone en relieve varios aspectos de la presente tesis. Todos los modelos considerados y los métodos numéricos van acompañados de varios ejemplos y simulaciones. Se estudia la convergencia numérica que confirma el estudio teórico de la consistencia. Las condiciones de estabilidad son corroboradas con ejemplos numéricos. Los resultados se comparan con métodos relevantes de la bibliografía mostrando la eficiencia de los métodos propuestos. / [CA] La present tesi doctoral se centra en la construcció d'esquemes en diferències finites i l'anàlisi numèrica de rellevants models de valoració d'opcions que generalitzen el model de Black-Scholes. Es proporciona una anàlisi cuidadosa de les propietats de les solucions numèri-ques com ara la positivitat, l'estabilitat i la consistència. A fi de manejar la frontera lliure que sorgix en els problemes de valoració d'opcions Americanes, s'apliquen i s'estudien diverses tècniques de transformació basades en el mètode de fixació de les fronteres (front-fixing). Es presta especial atenció a la valoració d'opcions de múltiples actius, com són les opcions ''exchange'' i ''spread''. Esta tesi es compon de sis capítols. El primer capítol és una introducció que conté les definicions d'opció i termes relacionats i la derivació de l'equació de Black-Scholes, així com aspectes generals de la teoria dels esquemes en diferències finites, incloent aspectes preliminars d'anàlisi numèrica. El 2n capítol està dedicat a resoldre el model lineal de Black-Scholes per a opcions Americanes ''put'' i ''call''. Per a fixar les fronteres del problema de frontera lliure s'apliquen transformacions com la de Landau i s'ha proposat un nou canvi de variable proposat. Açò porta a una equació diferencial en derivades parcials no lineal en un domini fix. L'eficiència del mètode front-fixing mostrada en el 2n capítol ha motivat l'estudi de la seua aplicació a alguns models no lineals més complicats. En particular, es proposa un canvi de variables que porta a una nova frontera dependent del temps en compte d'una fixa. Este canvi s'aplica a models no lineals de Black-Scholes per a opcions Americanes, com són el de Barles i Soner i el model RAPM (Risk Adjusted Pricing Methodology). El 4t capítol oferix una nova tècnica per a la resolució de problemes de valoració d'opcions Americanes basada en la racionalitat dels inversors. Apareix una funció de la intensitat que es pot reduir en el cas més simple a la tècnica de penalització (penal method) . Este enfocament té en compte el possible comportament irracional dels inversors. En la secció 4.2 s'aplica esta tècnica al model de canvi de règims el que porta a un nou model que té en compte el possible exercici irracional, així com diversos estats del mercat. L'enfocament del paràmetre de racionalitat junt amb una transformació logarítmica permeten construir un esquema numèric eficient sense aplicar el mètode front-fixing o la coneguda formulació de LCP (Linear Complementarity Problem). El 5é capítol es dedica a la valoració d'opcions d'actius múltiples. Una transformació apropiada permet l'eliminació del terme de derivades mixtes evitant inconvenients computacionals i possibles problemes d' estabilitat. Les conclusions es mostren al 6é capítol. Es posa en relleu diversos aspectes de la present tesi. Tots els models considerats i els mètodes numèrics van acompanyats de diversos exemples i simulacions. S'estu-dia la convergència numèrica que confirma l'estudi teòric de la consistència. Les condicions d'estabilitat són corroborades amb exemples numèrics. Els resultats es comparen amb mètodes rellevants de la bibliografia mostrant l'eficiència dels mètodes proposats. / Egorova, V. (2016). Finite Difference Methods for nonlinear American Option Pricing models: Numerical Analysis and Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68501 / Premios Extraordinarios de tesis doctorales
23

Esquema compacto de diferenças finitas de alta ordem em malhas hierárquicas / Higher-order finite-difference schemes for hierarchical meshes

Cerciliar, Ellen Thais Alves 21 December 2017 (has links)
Este trabalho propõe um esquema de diferenças finitas compacta de alta ordem para resolver problemas elípticos com coeficientes variáveis em malhas composta. São apresentados a formulação matemática e a dedução do método compacto de quarta ordem aplicado à problemas elípticos bidimensionais, em malha regular e composta. Foi adotado o uso da biblioteca PETSc com os seus pré-condicionadores e métodos numéricos para resolver os sistemas lineares resultantes da discretização do problema. Por fim, testes visando verificar o código foram feitos, utilizando o método de soluções manufaturadas, para mostrar alta eficiência e acurácia do método desenvolvido. / This paper proposes a scheme of compact finite difference higher order for solve elliptic problems with variable coeficients in composite meshes. we present the mathematical formulation and the deduction of the compact method of fourth order applied to two-dimensional elliptic problems in regular and composite mesh . It was adopted using the PETSc library with its pre- conditioners and numerical methods for solving linear systems resulting from discretization of the problem. Finally , tests to verify the code were made using the method of manufactured solutions to show high eficiency and accuracy of the method developed .
24

Study and characetrization of plastic encapsulated packages for MEMS

Deshpande, Anjali W 14 January 2005 (has links)
Technological advancement has thrust MEMS design and fabrication into the forefront of modern technologies. It has become sufficiently self-sustained to allow mass production. The limiting factor which is stalling commercialization of MEMS is the packaging and device reliability. The challenging issues with MEMS packaging are application specific. The function of the package is to give the MEMS device mechanical support, protection from the environment, and electrical connection to other devices in the system. The current state of the art in MEMS packaging transcends the various packaging techniques available in the integrated circuit (IC) industry. At present the packaging of MEMS includes hermetic ceramic packaging and metal packaging with hermetic seals. For example the ADXL202 accelerometer from the Analog Devices. Study of the packaging methods and costs show that both of these methods of packaging are expensive and not needed for majority of MEMS applications. Due to this the cost of current MEMS packaging is relatively high, as much as 90% of the finished product. Reducing the cost is therefore of the prime concern. This Thesis explores the possibility of an inexpensive plastic package for MEMS sensors like accelerometers, optical MEMS, blood pressure sensors etc. Due to their cost effective techniques, plastic packaging already dominates the IC industry. They cost less, weigh less, and their size is small. However, porous nature of molding materials allows penetration of moisture into the package. The Thesis includes an extensive study of the plastic packaging and characterization of three different plastic package samples. Polymeric materials warp upon absorbing moisture, generating hygroscopic stresses. Hygroscopic stresses in the package add to the thermal stress due to high reflow temperature. Despite this, hygroscopic characteristics of the plastic package have been largely ignored. To facilitate understanding of the moisture absorption, an analytical model is presented in this Thesis. Also, an empirical model presents, in this Thesis, the parameters affecting moisture ingress. This information is important to determine the moisture content at a specific time, which would help in assessing reliability of the package. Moisture absorption is modeled using the single phase absorption theory, which assumes that moisture diffusion occurs freely without any bonding with the resin. This theory is based on the Fick's Law of diffusion, which considers that the driving force of diffusion is the water concentration gradient. A finite difference simulation of one-dimensional moisture diffusion using the Crank-Nicolson implicit formula is presented. Moisture retention causes swelling of compounds which, in turn, leads to warpage. The warpage induces hygroscopic stresses. These stresses can further limit the performance of the MEMS sensors. This Thesis also presents a non invasive methodology to characterize a plastic package. The warpage deformations of the package are measured using Optoelectronic holography (OEH) methodology. The OEH methodology is noninvasive, remote, and provides results in full-field-of-view. Using the quantitative results of OEH measurements of deformations of a plastic package, pressure build up can be calculated and employed to assess the reliability of the package.
25

Uncertainty Quantification and Numerical Methods for Conservation Laws

Pettersson, Per January 2013 (has links)
Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansion approach where the solution is represented as a generalized Fourier series of stochastic basis functions, e.g. orthogonal polynomials or wavelets. The stochastic Galerkin method is used to project the governing partial differential equation onto the stochastic basis functions to obtain an extended deterministic system. The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain viscosity. We investigate well-posedness, monotonicity and stability for the stochastic Galerkin system. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability. We investigate the impact of the total spatial operator on the convergence to steady-state.  Next we apply the stochastic Galerkin method to Burgers' equation with uncertain boundary conditions. An analysis of the truncated polynomial chaos system presents a qualitative description of the development of the solution over time. An analytical solution is derived and the true polynomial chaos coefficients are shown to be smooth, while the corresponding coefficients of the truncated stochastic Galerkin formulation are shown to be discontinuous. We discuss the problematic implications of the lack of known boundary data and possible ways of imposing stable and accurate boundary conditions. We present a new fully intrusive method for the Euler equations subject to uncertainty based on a Roe variable transformation. The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, it is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. A multiwavelet basis that can handle  discontinuities in a robust way is used. Finally, we investigate a two-phase flow problem. Based on regularity analysis of the generalized polynomial chaos coefficients, we present a hybrid method where solution regions of varying smoothness are coupled weakly through interfaces. In this way, we couple smooth solutions solved with high-order finite difference methods with non-smooth solutions solved for with shock-capturing methods.
26

The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's Equations / The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's Equations

Armenta Barrera, Roberto 06 December 2012 (has links)
The principle of coordinate invariance states that all physical laws must be formulated in a mathematical form that is independent of the geometrical properties of any particular coordinate system. Embracing this principle is the key to understand how to systematically incorporate curved material interfaces into a numerical solution of Maxwell’s equations. This dissertation describes how to generate a coordinate invariant representation of Maxwell’s equations in differential form, and it demonstrates why employing such representation is crucial to the development of robust finite-difference discretisations with consistent global error properties. As part of this process, two original contributions are presented that address the issue of constructing finite-difference approximations at the locations of material interfaces. The first contribution is a domain-decomposition procedure to enforce the tangential field continuity conditions with a second-order local truncation error that can be applied in 2-D or 3-D. The second contribution is a similar domain-decomposition procedure that enforces the tangential field continuity conditions with a local truncation of order 2L—where L is an integer greater or equal to one—but that can only be applied in 1-D. To conclude, the dissertation also describes the interesting connection that exists between the use of a coordinate invariant representation of Maxwell’s equations to design artificial materials and the use of the same representation to model curved material interfaces in a finite-difference discretisation.
27

The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's Equations / The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's Equations

Armenta Barrera, Roberto 06 December 2012 (has links)
The principle of coordinate invariance states that all physical laws must be formulated in a mathematical form that is independent of the geometrical properties of any particular coordinate system. Embracing this principle is the key to understand how to systematically incorporate curved material interfaces into a numerical solution of Maxwell’s equations. This dissertation describes how to generate a coordinate invariant representation of Maxwell’s equations in differential form, and it demonstrates why employing such representation is crucial to the development of robust finite-difference discretisations with consistent global error properties. As part of this process, two original contributions are presented that address the issue of constructing finite-difference approximations at the locations of material interfaces. The first contribution is a domain-decomposition procedure to enforce the tangential field continuity conditions with a second-order local truncation error that can be applied in 2-D or 3-D. The second contribution is a similar domain-decomposition procedure that enforces the tangential field continuity conditions with a local truncation of order 2L—where L is an integer greater or equal to one—but that can only be applied in 1-D. To conclude, the dissertation also describes the interesting connection that exists between the use of a coordinate invariant representation of Maxwell’s equations to design artificial materials and the use of the same representation to model curved material interfaces in a finite-difference discretisation.
28

Esquema compacto de diferenças finitas de alta ordem em malhas hierárquicas / Higher-order finite-difference schemes for hierarchical meshes

Ellen Thais Alves Cerciliar 21 December 2017 (has links)
Este trabalho propõe um esquema de diferenças finitas compacta de alta ordem para resolver problemas elípticos com coeficientes variáveis em malhas composta. São apresentados a formulação matemática e a dedução do método compacto de quarta ordem aplicado à problemas elípticos bidimensionais, em malha regular e composta. Foi adotado o uso da biblioteca PETSc com os seus pré-condicionadores e métodos numéricos para resolver os sistemas lineares resultantes da discretização do problema. Por fim, testes visando verificar o código foram feitos, utilizando o método de soluções manufaturadas, para mostrar alta eficiência e acurácia do método desenvolvido. / This paper proposes a scheme of compact finite difference higher order for solve elliptic problems with variable coeficients in composite meshes. we present the mathematical formulation and the deduction of the compact method of fourth order applied to two-dimensional elliptic problems in regular and composite mesh . It was adopted using the PETSc library with its pre- conditioners and numerical methods for solving linear systems resulting from discretization of the problem. Finally , tests to verify the code were made using the method of manufactured solutions to show high eficiency and accuracy of the method developed .
29

On the numerical integration of singularly perturbed Volterra integro-differential equations

Iragi, Bakulikira January 2017 (has links)
Magister Scientiae - MSc / Efficient numerical approaches for parameter dependent problems have been an inter- esting subject to numerical analysts and engineers over the past decades. This is due to the prominent role that these problems play in modeling many real life situations in applied sciences. Often, the choice and the e ciency of the approaches depend on the nature of the problem to solve. In this work, we consider the general linear first-order singularly perturbed Volterra integro-differential equations (SPVIDEs). These singularly perturbed problems (SPPs) are governed by integro-differential equations in which the derivative term is multiplied by a small parameter, known as "perturbation parameter". It is known that when this perturbation parameter approaches zero, the solution undergoes fast transitions across narrow regions of the domain (termed boundary or interior layer) thus affecting the convergence of the standard numerical methods. Therefore one often seeks for numerical approaches which preserve stability for all the values of the perturbation parameter, that is "numerical methods. This work seeks to investigate some "numerical methods that have been used to solve SPVIDEs. It also proposes alternative ones. The various numerical methods are composed of a fitted finite difference scheme used along with suitably chosen interpolating quadrature rules. For each method investigated or designed, we analyse its stability and convergence. Finally, numerical computations are carried out on some test examples to con rm the robustness and competitiveness of the proposed methods.
30

Numerical wave propagation in large-scale 3-D environments

Almquist, Martin January 2012 (has links)
High-order accurate finite difference methods have been applied to the acoustic wave equation in discontinuous media and curvilinear geometries, using the SBP-SAT method. Strict stability is shown for the 2-D wave equation with general boundary conditions. The fourth-order accurate method for the 3-D wave equation has been implemented in C and parallelized using MPI. The implementation has been verified against an analytical solution and runs efficiently on a large number of processors.

Page generated in 0.0904 seconds