• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilité et stabilisation en temps fini des ystèmes dynamiques interconnectés et problème de consensus en temps fini / Finite-time stability and stabilization of interconnected dynamical systems and finite time consensus problems

Zoghlami, Naïm 26 May 2014 (has links)
Ce manuscrit est dédié à l'étude de la stabilité et la stabilisation en temps fini des systèmes dynamiques interconnectés et problème de consensus en temps fini. Après une large introduction, la première partie de ce mémoire se focalise sur la stabilité et stabilisation en temps fini des systèmes dynamiques perturbés et des systèmes dynamiques interconnectés. La deuxième partie de cette thèse est consacrée aux problèmes de : consensus en temps fini, consensus moyen en temps fini et stabilisation en temps fini des systèmes multi-agents. Cette notion a été abordé en ciblant les systèmes dynamiques contrôlés non linéaires et complexes de type avec et sans terme de dérive et affine en la commande. Des protocoles sont mis en exergue résolvant les problèmes de consensus/formation en temps fini entre les états de tels systèmes. De nombreuses applications avec des simulations permettent de confirmer les protocoles proposés. / This manuscript is dedicated to the study of finite time stability and stabilization of interconnected dynamical systems and finite time consensus problem. After a general introduction, the first part of this thesis focuses on finite time stability and stabilization of perturbed systems and interconnected systems. The second part of this thesis is devoted to the problems of: finite-time consensus, average consensus and finite time stabilization of multi-agent systems. This concept has been addressed by targeting non-linear controlled dynamical systems: with and without drift term. Some protocols are proposed to solve the finite time consensus problem. Many applications and simulations are illustrated.
2

Finite-time partial stability, stabilization, semistabilization, and optimal feedback control

L'afflitto, Andrea 08 June 2015 (has links)
Asymptotic stability is a key notion of system stability for controlled dynamical systems as it guarantees that the system trajectories are bounded in a neighborhood of a given isolated equilibrium point and converge to this equilibrium over the infinite horizon. In some applications, however, asymptotic stability is not the appropriate notion of stability. For example, for systems with a continuum of equilibria, every neighborhood of an equilibrium contains another equilibrium and a nonisolated equilibrium cannot be asymptotically stable. Alternatively, in stabilization of spacecraft dynamics via gimballed gyroscopes, it is desirable to find state- and output-feedback control laws that guarantee partial-state stability of the closed-loop system, that is, stability with respect to part of the system state. Furthermore, we may additionally require finite-time stability of the closed-loop system, that is, convergence of the system's trajectories to a Lyapunov stable equilibrium in finite time. The Hamilton-Jacobi-Bellman optimal control framework provides necessary and sufficient conditions for the existence of state-feedback controllers that minimize a given performance measure and guarantee asymptotic stability of the closed-loop system. In this research, we provide extensions of the Hamilton-Jacobi-Bellman optimal control theory to develop state-feedback control laws that minimize nonlinear-nonquadratic performance criteria and guarantee semistability, partial-state stability, finite-time stability, and finite-time partial state stability of the closed-loop system.
3

Practical Issues in Formation Control of Multi-Robot Systems

Zhang, Junjie 2010 May 1900 (has links)
Considered in this research is a framework for effective formation control of multirobot systems in dynamic environments. The basic formation control involves two important considerations: (1) Real-time trajectory generation algorithms for distributed control based on nominal agent models, and (2) robust tracking of reference trajectories under model uncertainties. Proposed is a two-layer hierarchical architecture for collectivemotion control ofmultirobot nonholonomic systems. It endows robotic systems with the ability to simultaneously deal with multiple tasks and achieve typical complex formation missions, such as collisionfree maneuvers in dynamic environments, tracking certain desired trajectories, forming suitable patterns or geometrical shapes, and/or varying the pattern when necessary. The study also addresses real-time formation tracking of reference trajectories under the presence of model uncertainties and proposes robust control laws such that over each time interval any tracking errors due to system uncertainties are driven down to zero prior to the commencement of the subsequent computation segment. By considering a class of nonlinear systems with favorable finite-time convergence characteristics, sufficient conditions for exponential finite-time stability are established and then applied to distributed formation tracking controls. This manifests in the settling time of the controlled system being finite and no longer than the predefined reference trajectory segment computing time interval, thus making tracking errors go to zero by the end of the time horizon over which a segment of the reference trajectory is generated. This way the next segment of the reference trajectory is properly initialized to go into the trajectory computation algorithm. Consequently this could lead to a guarantee of desired multi-robot motion evolution in spite of system uncertainties. To facilitate practical implementation, communication among multi-agent systems is considered to enable the construction of distributed formation control. Instead of requiring global communication among all robots, a distributed communication algorithm is employed to eliminate redundant data propagation, thus reducing energy consumption and improving network efficiency while maintaining connectivity to ensure the convergence of formation control.
4

Global finite-time observers for a class of nonlinear systems

Li, Yunyan January 2013 (has links)
The contributions of this thesis lie in the area of global finite-time observer design for a class of nonlinear systems with bounded rational and mixed rational powers imposed on the incremental rate of the nonlinear terms whose solutions exist and are unique for all positive time. In the thesis, two different kinds of nonlinear global finite-time observers are designed by employing of finite-time theory and homogeneity properties with different methods. The global finite-time stability of both proposed observers is derived on the basis of Lyapunov theory. For a class of nonlinear systems with rational and mixed rational powers imposed on the nonlinearities, the first global finite-time observers are designed, where the global finite-time stability of the observation systems is achieved from two parts by combining asymptotic stability and local finitetime stability. The proposed observers can only be designed for the class of nonlinear systems with dimensions greater than 3. The observers have a dynamic high gain and two homogenous terms, one homogeneous of degree greater than 1 and the other of degree less than 1. In order to prove the global finite-time stability of the proposed results, two homogeneous Lyapunov functions are provided, corresponding with the two homogeneous items. One is homogeneous of degree greater than 1, which makes the observation error systems converging into a spherical area around the origin, and the other is of degree less than 1, which ensures local finite-time stability. The second global finite-time observers are also proposed based on the high-gain technique, which does not place any limitation on the dimension of the nonlinear systems. Compared with the first global finite-time observers, the newly designed observers have only one homogeneous term and a new gain update law where two new terms are introduced to dominate some terms in the nonlinearities and ensure global finite-time stability as well. The global finite-time stability is obtained directly based on a sufficient condition of finite-time stability and only one Lyapunov function is employed in the proof. The validity of the two kinds of global finite-time observers that have been designed is illustrated through some simulation results. Both of them can make the observation error systems converge to the origin in finite-time. The parameters, initial conditions as well as the high gain do have some impact on the convergence time, where the high gain plays a stronger role. The bigger the high gain is, the shorter the time it needs to converge. In order to show the performance of the two kinds of observers more clearly, two examples are provided and some comparisons are made between them. Through these, it can be seen that under the same parameters and initial conditions, although the amplitude of the observation error curve is slightly greater, the global finite-time observers with a new gain update law can make the observation error systems converge much more quickly than the global finite-time observers with two homogeneous terms. In the simulation results, one can see that, as a common drawback of high gain observers, they are noise-sensitive. Finding methods to improve their robustness and adaptiveness will be quite interesting, useful and challenging. / Thesis (PhD)--University of Pretoria, 2013. / gm2014 / Electrical, Electronic and Computer Engineering / unrestricted
5

Stabilité et stabilisation en temps fini des systèmes dynamiques / Finite Stability and Stabilization of Dynamic Systems

Bhiri, Bassem 05 July 2017 (has links)
Ce mémoire de thèse traite de la stabilité en temps fini et de la stabilisation en temps fini des systèmes dynamiques. En effet, il est souvent important de garantir que pendant le régime transitoire, les trajectoires d'état ne dépassent pas certaines limites prédéfinies afin d'éviter les saturations et l'excitation des non-linéarités du système. Un système dynamique est dit stable en temps fini FTS si, pour tout état initial appartenant à un ensemble borné prédéterminé, la trajectoire d'état reste comprise dans un autre ensemble borné prédéterminé pendant un temps fini et fixé. Lorsque le système est perturbé, on parle de bornitude en temps fini FTB. Premièrement, des nouvelles conditions suffisantes assurant la synthèse d'un correcteur FTB par retour de sortie dynamique des systèmes linéaires continus invariants perturbés ont été développées via une approche descripteur originale. Le résultat a été établi par une transformation de congruence particulière. Les conditions obtenues sont sous forme de LMIs. Deuxièmement, l'utilisation de la notion d'annulateur combinée avec le lemme de Finsler, permet d’obtenir des nouvelles conditions sous formes LMIs garantissant la stabilité et la stabilisation en temps fini des systèmes non linéaires quadratiques. Enfin, pour obtenir des conditions encore moins pessimistes dans un contexte de stabilité en temps fini, de nouveaux développements ont été proposés en utilisant des fonctions de Lyapunov polynomiales / This dissertation deals with the finite time stability and the finite time stabilization of dynamic systems. Indeed, it is often important to ensure that during the transient regime, the state trajectories do not exceed certain predefined limits in order to avoid saturations and excitations of the nonlinearities of the system. Hence the interest is to study the stability of the dynamic system in finite time. A dynamic system is said to be stable in finite time (FTS) if, for any initial state belonging to a predetermined bounded set, the state trajectory remains within another predetermined bounded set for a finite and fixed time. When the system is disturbed, it is called finite time boundedness (FTB). In this manuscript, the goal is to improve the results of finite time stability used in the literature. First, new sufficient conditions expressed in terms of LMIs for the synthesis of an FTB controller by dynamic output feedback have been developed via an original descriptor approach. An original method has been proposed which consists in using a particular congruence transformation. Second, new LMI conditions for the study of finite time stability and finite time stabilization have been proposed for disturbed and undisturbed nonlinear quadratic systems. Third, to obtain even less conservative conditions, new developments have been proposed using polynomial Lyapunov functions
6

Commande distribuée, en poursuite, d'un système multi-robots non holonomes en formation / Distributed tracking control of nonholonomic multi-robot formation systems

Chu, Xing 13 December 2017 (has links)
L’objectif principal de cette thèse est d’étudier le problème du contrôle de suivi distribué pour les systèmes de formation de multi-robots à contrainte non holonomique. Ce contrôle vise à entrainer une équipe de robots mobile de type monocycle pour former une configuration de formation désirée avec son centroïde se déplaçant avec une autre trajectoire de référence dynamique et pouvant être spécifié par le leader virtuel ou humain. Le problème du contrôle de suivi a été résolu au cours de cette thèse en développant divers contrôleurs distribués pratiques avec la considération d’un taux de convergence plus rapide, une précision de contrôle plus élevée, une robustesse plus forte, une estimation du temps de convergence explicite et indépendante et moins de coût de communication et de consommation d’énergie. Dans la première partie de la thèse nous étudions d’abord au niveau du chapitre 2 la stabilité à temps fini pour les systèmes de formation de multi-robots. Une nouvelle classe de contrôleur à temps fini est proposée dans le chapitre 3, également appelé contrôleur à temps fixe. Nous étudions les systèmes dynamiques de suivi de formation de multi-robots non holonomiques dans le chapitre 4. Dans la deuxième partie, nous étudions d'abord le mécanisme de communication et de contrôle déclenché par l'événement sur les systèmes de suivi de la formation de multi-robots non-holonomes au chapitre 5. De plus, afin de développer un schéma d'implémentation numérique, nous proposons une autre classe de contrôleurs périodiques déclenchés par un événement basé sur un observateur à temps fixe dans le chapitre 6. / The main aim of this thesis is to study the distributed tracking control problem for the multi-robot formation systems with nonholonomic constraint, of which the control objective it to drive a team of unicycle-type mobile robots to form one desired formation configuration with its centroid moving along with another dynamic reference trajectory, which can be specified by the virtual leader or human. We consider several problems in this point, ranging from finite-time stability andfixed-time stability, event-triggered communication and control mechanism, kinematics and dynamics, continuous-time systems and hybrid systems. The tracking control problem has been solved in this thesis via developing diverse practical distributed controller with the consideration of faster convergence rate, higher control accuracy, stronger robustness, explicit and independent convergence time estimate, less communication cost and energy consumption.In the first part of the thesis, we first study the finite-time stability for the multi-robot formation systems in Chapter 2. To improve the pior results, a novel class of finite-time controller is further proposed in Chapter 3, which is also called fixed-time controller. The dynamics of nonholonomic multi-robot formation systems is considered in Chapter 4. In the second part, we first investigate the event-triggered communication and control mechanism on the nonholonomic multi-robot formation tracking systems in Chapter 5. Moreover, in order to develop a digital implement scheme, we propose another class of periodic event-triggered controller based on fixed-time observer in Chapter 6.

Page generated in 0.0831 seconds